5
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Watson IoT Platform - 直接dashDBへデータを格納する

Last updated at Posted at 2016-08-16

初めてWatson IoT Platformを使ってみよう、というかたのためのガイドです。
Watson IoT Platformを使ってみるでIoTアプリを準備しました。
前項までの非SQLデータベース(Cloudant)を経由する方法ではなく、dashDBを個別に用意しそこへ直接IoTデータを書き込む手順です。

#dashDBを個別に用意します

  1. 他のBluemixサービスを使えるようにするの手順を参考にして、「データ&分析」カテゴリーの「DashDB」サービスのインスタンスを作成します。DashDB-xxのような名称が自動的にアサインされます。
  2. 作成されたdashDBインスタンス("DashDB-xx")を、Node-REDが稼働しているIoTアプリに接続します。Bluemixのダッシュボード(アプリ一覧)から該当するIoTアプリをダブルクリックして開き、「接続」メニューから「既存に接続」を選択し、前項で作成したdashDBインスタンスを選択して「接続」を押し、アプリを再ステージします。
  3. 作成されたdashDBのタイルをダブルクリックしてコンソールを開き、「Go to your tables」ボタンもしくは画面左側のメニューの「Tables」ボタンから「Add Table」を選択します。
  4. "Edit the DDL statements"の欄に下記をコピペし、"Run DDL"で実行します。
CC2650センサータグのデータを格納する表の例
CREATE TABLE "SENSOR2DB"
(
  "DATE" BIGINT,
  "DAY" BIGINT,
  "HOUR" BIGINT,
  "MINUTE" BIGINT,
  "MONTH" BIGINT,
  "SECOND" BIGINT,
  "YEAR" BIGINT,
  "ACCELX" VARCHAR(20),
  "ACCELY" VARCHAR(20),
  "ACCELZ" VARCHAR(20),
  "AMBIENTTEMP" VARCHAR(20),
  "GYROX" VARCHAR(20),
  "GYROY" VARCHAR(20),
  "GYROZ" VARCHAR(20),
  "HUMIDITY" VARCHAR(20),
  "LIGHT" VARCHAR(20),
  "MAGX" VARCHAR(20),
  "MAGY" VARCHAR(20),
  "MAGZ" VARCHAR(20),
  "OBJECTTEMP" VARCHAR(20)
);

#dashDBへ直接書き込みます

  1. 表が定義されたら、Node-REDのフローから書き込みます。下記のフローでは、実物のセンサーがなくてもDashDBへの書き込みを確認することが可能です。
Node-REDのフローからdashDBへ直接書き込み
[{"id":"d9208db3.c058b","type":"ibmiot in","z":"26e29f59.971b9","authentication":"quickstart","apiKey":"","inputType":"evt","deviceId":"","applicationId":"","deviceType":"+","eventType":"+","commandType":"","format":"json","name":"IBM IoT","service":"quickstart","allDevices":"","allApplications":"","allDeviceTypes":true,"allEvents":true,"allCommands":"","allFormats":"","x":110,"y":100,"wires":[["d0b499ec.913da"]]},{"id":"d0b499ec.913da","type":"function","z":"26e29f59.971b9","name":"日付時刻の追加","func":"var d = new Date();\nvar localTime = d.getTime();\nvar localOffset = d.getTimezoneOffset() * 60000;\nvar utc = localTime + localOffset;\nvar offset = -9.0;\nvar result = utc - (3600000 * offset);\nvar date = parseInt(new Date(result) / 1000);\nvar dt = new Date(result);\n\nvar year = dt.getFullYear();\nvar month = dt.getMonth()+1;\nvar day = dt.getDate();\nvar hour = dt.getHours();\nvar minute = dt.getMinutes();\nvar second = dt.getSeconds();\nif (!msg.payload) {\n    msg.payload = { \"initial\": \"value\" };\n}\nmsg.date = {\n        \"date\": date,\n        \"year\": year,\n        \"month\": month,\n        \"day\": day,\n        \"hour\": hour,\n        \"minute\": minute,\n        \"second\": second\n}\nreturn msg;","outputs":1,"noerr":0,"x":275,"y":100,"wires":[["3eaf0b79.ef1934"]]},{"id":"3eaf0b79.ef1934","type":"function","z":"26e29f59.971b9","name":"表へ書き込む","func":"msg.payload = \n{ \n\tDATE : msg.date.date,\n\tDAY : msg.date.day,\n\tHOUR : msg.date.hour,\n\tMINUTE : msg.date.minute,\n\tMONTH : msg.date.month,\n\tSECOND : msg.date.second,\n\tYEAR : msg.date.year,\n\tACCELX : 0,\n\tACCELY : 0,\n\tACCELZ : 0,\n\tAMBIENTTEMP : 10,\n\tGYROX : 0,\n\tGYROY : 0,\n\tGYROZ : 0,\n\tHUMIDITY : 0,\n\tLIGHT : 0,\n    MAGX : 0,\n\tMAGY : 0,\n\tMAGZ : 0,\n\tOBJECTTEMP : 20\n};\nreturn msg;","outputs":1,"noerr":0,"x":475,"y":100,"wires":[["a53a6b28.95b568"]]},{"id":"82761d4.5b880e","type":"inject","z":"26e29f59.971b9","name":"","topic":"","payload":"","payloadType":"date","repeat":"","crontab":"","once":false,"x":120,"y":160,"wires":[["d0b499ec.913da"]]},{"id":"a53a6b28.95b568","type":"dashDB out","z":"26e29f59.971b9","service":"","table":"SENSOR2DB","name":"dashDBへ書き込み","x":690,"y":100,"wires":[]}]

スクリーンショット 2016-08-16 12.23.58.png

  • センサータグCC2650の実物を接続してSENSOR2DBへ書き込む際には、以下のフローを使用可能です。下記のフローでは毎秒のデータが書き込まれます
実物のセンサータグからのデータのDashDBへの書き込み
[{"id":"8adcf1f2.2d066","type":"ibmiot in","z":"af611d0a.390108","authentication":"quickstart","apiKey":"","inputType":"evt","deviceId":"","applicationId":"","deviceType":"+","eventType":"+","commandType":"","format":"json","name":"IBM IoT","service":"quickstart","allDevices":"","allApplications":"","allDeviceTypes":true,"allEvents":true,"allCommands":"","allFormats":"","x":90,"y":80,"wires":[["4256dc3b.7a655c"]]},{"id":"4256dc3b.7a655c","type":"function","z":"af611d0a.390108","name":"日付時刻の追加","func":"var d = new Date();\nvar localTime = d.getTime();\nvar localOffset = d.getTimezoneOffset() * 60000;\nvar utc = localTime + localOffset;\nvar offset = -9.0;\nvar result = utc - (3600000 * offset);\nvar date = parseInt(new Date(result) / 1000);\nvar dt = new Date(result);\n\nvar year = dt.getFullYear();\nvar month = dt.getMonth()+1;\nvar day = dt.getDate();\nvar hour = dt.getHours();\nvar minute = dt.getMinutes();\nvar second = dt.getSeconds();\nif (!msg.payload) {\n    msg.payload = { \"initial\": \"value\" };\n}\nmsg.date = {\n        \"date\": date,\n        \"year\": year,\n        \"month\": month,\n        \"day\": day,\n        \"hour\": hour,\n        \"minute\": minute,\n        \"second\": second\n}\nreturn msg;","outputs":1,"noerr":0,"x":280,"y":80,"wires":[["c48af21a.27cab"]]},{"id":"c48af21a.27cab","type":"function","z":"af611d0a.390108","name":"表へ書き込む","func":"msg.payload = \n{ \n\tDATE : msg.date.date,\n\tDAY : msg.date.day,\n\tHOUR : msg.date.hour,\n\tMINUTE : msg.date.minute,\n\tMONTH : msg.date.month,\n\tSECOND : msg.date.second,\n\tYEAR : msg.date.year,\n\tACCELX : msg.payload.d.accelX,\n\tACCELY : msg.payload.d.accelY,\n\tACCELZ : msg.payload.d.accelZ,\n\tAMBIENTTEMP : msg.payload.d.ambientTemp,\n\tGYROX : msg.payload.d.gyroX,\n\tGYROY : msg.payload.d.gyroY,\n\tGYROZ : msg.payload.d.gyroZ,\n\tHUMIDITY : msg.payload.d.humidity,\n\tLIGHT : msg.payload.d.light,\n    MAGX : msg.payload.d.magX,\n\tMAGY : msg.payload.d.magY,\n\tMAGZ : msg.payload.d.magZ,\n\tOBJECTTEMP : msg.payload.d.objectTemp\n};\nreturn msg;","outputs":1,"noerr":0,"x":480,"y":80,"wires":[["8fc33952.764748"]]},{"id":"60f64626.3f54c8","type":"inject","z":"af611d0a.390108","name":"","topic":"","payload":"","payloadType":"date","repeat":"","crontab":"","once":false,"x":100,"y":140,"wires":[["4256dc3b.7a655c"]]},{"id":"8fc33952.764748","type":"dashDB out","z":"af611d0a.390108","service":"dashDB-wf","table":"SENSOR2DB","name":"dashDBへ書き込み","x":710,"y":80,"wires":[]}]

  • 同様に、下記のフローでは実物のCC2650センサータグからのデータを10秒毎にdashDBのSENSOR2DBへ書き込みます。書き込む間隔は10秒毎に書き出しノードのif (msg.date.second % 10 === 0) return msg;の値を15秒毎、20秒毎、30秒毎などへ変更することで調整可能です。
実物のセンサータグから時間間隔でデータをDashDBへの書き込み
[{"id":"b1c25b95.3903a","type":"ibmiot in","z":"1b4d0fef.0afda8","authentication":"quickstart","apiKey":"","inputType":"evt","deviceId":"","applicationId":"","deviceType":"+","eventType":"+","commandType":"","format":"json","name":"IBM IoT","service":"quickstart","allDevices":"","allApplications":"","allDeviceTypes":true,"allEvents":true,"allCommands":"","allFormats":"","x":110,"y":80,"wires":[["41bfc260.353cec"]]},{"id":"41bfc260.353cec","type":"function","z":"1b4d0fef.0afda8","name":"日付時刻の追加","func":"var d = new Date();\nvar localTime = d.getTime();\nvar localOffset = d.getTimezoneOffset() * 60000;\nvar utc = localTime + localOffset;\nvar offset = -9.0;\nvar result = utc - (3600000 * offset);\nvar date = parseInt(new Date(result) / 1000);\nvar dt = new Date(result);\n\nvar year = dt.getFullYear();\nvar month = dt.getMonth()+1;\nvar day = dt.getDate();\nvar hour = dt.getHours();\nvar minute = dt.getMinutes();\nvar second = dt.getSeconds();\nif (!msg.payload) {\n    msg.payload = { \"initial\": \"value\" };\n}\nmsg.date = {\n        \"date\": date,\n        \"year\": year,\n        \"month\": month,\n        \"day\": day,\n        \"hour\": hour,\n        \"minute\": minute,\n        \"second\": second\n}\nreturn msg;","outputs":1,"noerr":0,"x":300,"y":80,"wires":[["48468dfa.d396cc"]]},{"id":"48468dfa.d396cc","type":"function","z":"1b4d0fef.0afda8","name":"表へ書き込む","func":"msg.payload = \n{ \n\tDATE : msg.date.date,\n\tDAY : msg.date.day,\n\tHOUR : msg.date.hour,\n\tMINUTE : msg.date.minute,\n\tMONTH : msg.date.month,\n\tSECOND : msg.date.second,\n\tYEAR : msg.date.year,\n\tACCELX : msg.payload.d.accelX,\n\tACCELY : msg.payload.d.accelY,\n\tACCELZ : msg.payload.d.accelZ,\n\tAMBIENTTEMP : msg.payload.d.ambientTemp,\n\tGYROX : msg.payload.d.gyroX,\n\tGYROY : msg.payload.d.gyroY,\n\tGYROZ : msg.payload.d.gyroZ,\n\tHUMIDITY : msg.payload.d.humidity,\n\tLIGHT : msg.payload.d.light,\n    MAGX : msg.payload.d.magX,\n\tMAGY : msg.payload.d.magY,\n\tMAGZ : msg.payload.d.magZ,\n\tOBJECTTEMP : msg.payload.d.objectTemp\n};\nreturn msg;","outputs":1,"noerr":0,"x":500,"y":80,"wires":[["a3b8a0c3.7b7bf"]]},{"id":"39818c66.f55ffc","type":"inject","z":"1b4d0fef.0afda8","name":"","topic":"","payload":"","payloadType":"date","repeat":"","crontab":"","once":false,"x":140,"y":180,"wires":[["41bfc260.353cec"]]},{"id":"f29e4ba4.c214b","type":"dashDB out","z":"1b4d0fef.0afda8","service":"dashDB-9x","table":"SENSOR2DB","name":"dashDBへ書き込み","x":710,"y":180,"wires":[]},{"id":"a3b8a0c3.7b7bf","type":"function","z":"1b4d0fef.0afda8","name":"10秒毎に書き出し","func":"if (msg.date.second % 10 === 0) return msg;","outputs":1,"noerr":0,"x":480,"y":180,"wires":[["f29e4ba4.c214b","e36cc315.0859c"]]},{"id":"e36cc315.0859c","type":"debug","z":"1b4d0fef.0afda8","name":"","active":true,"console":"false","complete":"false","x":700,"y":120,"wires":[]}]

#Node-REDからアクセスできる事を確認します。

  1. Node-REDを使ってdashDBからデータが読み出せる事を確認します。
Node-REDを使ってdashDBから読み込み
[{"id":"127a1686.2cd8a1","type":"inject","z":"26e29f59.971b9","name":"","topic":"","payload":"","payloadType":"date","repeat":"","crontab":"","once":false,"x":120,"y":240,"wires":[["ea6b87c4.f3089"]]},{"id":"3ae7e667.6b1402","type":"debug","z":"26e29f59.971b9","name":"","active":true,"console":"false","complete":"false","x":530,"y":240,"wires":[]},{"id":"ea6b87c4.f3089","type":"dashDB in","z":"26e29f59.971b9","service":"","query":"select * from SENSOR2DB;","params":"","name":"dashDBから読み取り","x":320,"y":240,"wires":[["3ae7e667.6b1402"]]}]

スクリーンショット 2016-07-06 19.32.04.png

#dashDB内のデータを確認します。
dashDBの機能を使ってデータベース内のデータを確認します。

  1. dashDBのコンソールを開きます。
  2. 「Create, drop, and work with tables」画面の「Table name」欄のプルダウンで対象のデータベース(例:"SENSOR2DB")を指定します。
    スクリーンショット 2016-05-19 18.06.50.png
  3. 画面中央の「Schema」欄に表示されるスキーマ名(例:DASH016xxx)を控えておきます。この画面の「Browse Data」メニューから、データベース表内のデータを確認(閲覧)することが可能です。画面右側の「列の表示/非表示と順序付け」ボタンから表示される列を選択することも可能です。
    スクリーンショット 2016-08-17 18.00.06.png
  4. 画面左側のメニューから「Run SQL」を選択します。
  5. 表示されたSQL入力画面に下記を入力します。「Validate」ボタンを押してSQL構文にエラーが無い事を確認して、「Run」ボタンで実行します。
select count(*) from DASH016xxx.sensor2db;
  • 予め用意されたSQL文は削除しても構いませんし、先頭に"--"を付加することでコメント化されます。
    スクリーンショット 2016-05-19 18.16.11.png

  • 実行結果をスクロールダウンし、データベースに保存されているレコードの件数がCloudantコンソールに表示される件数と一致する事を確認します。
    スクリーンショット 2016-05-19 18.26.43.png

  • 同様に、「Run SQL」画面からSQLを発行する事が可能です。

  • 特定の行を挿入(登録)するには下記のようなSQLを使用します。ここではambienttempがゼロの行を挿入(登録)しています。

insert into DASHxxxx.SENSOR2DB (ambienttemp) values(0);
  • 特定の行を削除するには下記のようなSQLを使用します。ここではambienttempがゼロの行を削除しています。
delete from DASHxxxxx.SENSOR2DB where ambienttemp=0;

#サンプル1:シミュレートしたIoTデータを指定した間隔でdashDBへ書き込む
下記のフローではIoTデータをシミュレートし、指定した間隔でdashDBへ書き込みます。

  1. IoTデータをシミュレート(生成)します
  2. 指定した間隔でdashDBへ直接書き込みます
  3. 使用時には左端の「1秒毎」Injectノードを次の「日付時刻の追加」functionノードへ接続して使用します。普段データが生成され続けてしまうので、使用しない時は切断しておくことをお薦めします。
  4. 必要に応じ、「センサー値を出力」functionノードを開き、冒頭のインターバル値を調整します。

スクリーンショット 2016-08-17 9.30.57.png

シミュレートしたIoTデータをDBへ書き込み
[{"id":"d6a7c81e.450048","type":"inject","z":"7e6262d4.bcd4e4","name":"1秒毎","topic":"","payload":"","payloadType":"date","repeat":"1","crontab":"","once":false,"x":90,"y":120,"wires":[[]]},{"id":"6f55fe33.6cf118","type":"inject","z":"7e6262d4.bcd4e4","name":"restart","topic":"","payload":"0","payloadType":"num","repeat":"","crontab":"","once":false,"x":90,"y":160,"wires":[["f2602e5b.bbb1b"]]},{"id":"a8639f02.42b0c8","type":"debug","z":"7e6262d4.bcd4e4","name":"出力","active":true,"console":"false","complete":"payload","x":630,"y":100,"wires":[]},{"id":"dce6eed8.b9fc9","type":"comment","z":"7e6262d4.bcd4e4","name":"シミュレートしたIoTデータを指定した間隔でDBへ書き込み","info":"","x":240,"y":60,"wires":[]},{"id":"f2602e5b.bbb1b","type":"function","z":"7e6262d4.bcd4e4","name":"日付時刻の追加","func":"var d = new Date();\nvar localTime = d.getTime();\nvar localOffset = d.getTimezoneOffset() * 60000;\nvar utc = localTime + localOffset;\nvar offset = -9.0;\nvar result = utc - (3600000 * offset);\nvar date = parseInt(new Date(result) / 1000);\nvar dt = new Date(result);\n\nvar year = dt.getFullYear();\nvar month = dt.getMonth()+1;\nvar day = dt.getDate();\nvar hour = dt.getHours();\nvar minute = dt.getMinutes();\nvar second = dt.getSeconds();\n//if (!msg.payload) {\n//    msg.payload = { \"initial\": \"value\" };\n//}\nif (!msg.date) {\n    msg.date = { \"initial\": \"value\" };\n}\nmsg.date = {\n        \"date\": date,\n        \"year\": year,\n        \"month\": month,\n        \"day\": day,\n        \"hour\": hour,\n        \"minute\": minute,\n        \"second\": second\n};\nreturn msg;","outputs":1,"noerr":0,"x":261,"y":140,"wires":[["47d39b27.1988dc","27f97ffa.6af63"]]},{"id":"47d39b27.1988dc","type":"debug","z":"7e6262d4.bcd4e4","name":"時刻の表示","active":false,"console":"false","complete":"date","x":430,"y":100,"wires":[]},{"id":"c4e1e935.195f18","type":"function","z":"7e6262d4.bcd4e4","name":"表へ書き込む","func":"msg.payload = \n{ \n\tDATE : msg.date.date,\n\tDAY : msg.date.day,\n\tHOUR : msg.date.hour,\n\tMINUTE : msg.date.minute,\n\tMONTH : msg.date.month,\n\tSECOND : msg.date.second,\n\tYEAR : msg.date.year,\n\tACCELX : 0,\n\tACCELY : 0,\n\tACCELZ : 0,\n\tAMBIENTTEMP : msg.sensor1,\n\tGYROX : 0,\n\tGYROY : 0,\n\tGYROZ : 0,\n\tHUMIDITY : 0,\n\tLIGHT : 0,\n    MAGX : 0,\n\tMAGY : 0,\n\tMAGZ : 0,\n\tOBJECTTEMP : msg.average\n};\nreturn msg;\n","outputs":1,"noerr":0,"x":660,"y":140,"wires":[["7e904315.ceda14"]]},{"id":"27f97ffa.6af63","type":"function","z":"7e6262d4.bcd4e4","name":"センサー値を出力","func":"//var sampling_min_interval = 1;\nvar sampling_sec_interval = 60;     // データを出力する間隔\n\nvar sum = 0, average = 0;\nvar sen1 = Math.floor(Math.random () * 10) + 1; // センサー値を生成(シミュレート)\n\nif ( !context.array ) {\n    context.array = new Array (10); //直近10件分を保持\n}\nvar shifted = context.array.shift();\ncontext.array.push(sen1);           // 最新の値を保存\nvar length = context.array.length;\n\nfor (k=0; k<length; k++) {\n        sum = sum + context.array[k];   // 合計を算出\n}\n\nvar hour = JSON.stringify(msg.date.hour);\nvar min_org  = JSON.stringify(msg.date.minute);\nvar min = ( \"0\" + min_org ).substr( -2 );       // 一桁分の場合、二桁に\nvar sec_org  = JSON.stringify(msg.date.second);\nvar sec = ( \"0\" + sec_org ).substr( -2 );       // 一桁秒の場合、二桁に\nvar time = hour + \":\" + min + \":\" + sec;\n\naverage = sum / length;\nvar data = [[time],[sen1],[average]];\nmsg.payload = data;\nif ( ( msg.date.second % sampling_sec_interval ) !== 0 ) return;\n//if ( ( msg.date.minute % sampling_min_interval ) !== 0 ) return;\nreturn msg;\n","outputs":1,"noerr":0,"x":450,"y":140,"wires":[["c4e1e935.195f18","a8639f02.42b0c8"]]},{"id":"7e904315.ceda14","type":"dashDB out","z":"7e6262d4.bcd4e4","service":"","table":"SENSOR2DB","name":"dashDB","x":820,"y":140,"wires":[]}]

#サンプル2:センサータグ(CC2650)からのIoTデータを指定した間隔でdashDBへ書き込む
下記のフローではセンサータグCC2650からのIoTデータを指定した間隔でdashDBへ書き込み、それを表示します。

  1. センサータグCC2650からデータを取得します
  2. 指定した間隔でdashDBへ直接書き込みます
  3. 必要に応じ、「センサー値を出力」functionノードを開き、冒頭のインターバル値を調整します。

スクリーンショット 2016-08-17 13.21.37.png

センサータグCC2650からのデータをdashDBへ格納し、D3で可視化する
[{"id":"175917e8.30b87","type":"inject","z":"64589e61.60898","name":"1秒毎","topic":"","payload":"","payloadType":"date","repeat":"1","crontab":"","once":false,"x":110,"y":200,"wires":[[]]},{"id":"c3e41b5d.223d28","type":"inject","z":"64589e61.60898","name":"restart","topic":"","payload":"0","payloadType":"num","repeat":"","crontab":"","once":false,"x":110,"y":240,"wires":[[]]},{"id":"a0155b1b.cda098","type":"comment","z":"64589e61.60898","name":"IoTデータを指定した間隔でDBへ書き込み","info":"","x":200,"y":60,"wires":[]},{"id":"6d18f085.c1b5d8","type":"function","z":"64589e61.60898","name":"日付時刻の追加","func":"var d = new Date();\nvar localTime = d.getTime();\nvar localOffset = d.getTimezoneOffset() * 60000;\nvar utc = localTime + localOffset;\nvar offset = -9.0;\nvar result = utc - (3600000 * offset);\nvar date = parseInt(new Date(result) / 1000);\nvar dt = new Date(result);\n\nvar year = dt.getFullYear();\nvar month = dt.getMonth()+1;\nvar day = dt.getDate();\nvar hour = dt.getHours();\nvar minute = dt.getMinutes();\nvar second = dt.getSeconds();\n//if (!msg.payload) {\n//    msg.payload = { \"initial\": \"value\" };\n//}\nif (!msg.date) {\n    msg.date = { \"initial\": \"value\" };\n}\nmsg.date = {\n        \"date\": date,\n        \"year\": year,\n        \"month\": month,\n        \"day\": day,\n        \"hour\": hour,\n        \"minute\": minute,\n        \"second\": second\n};\nreturn msg;","outputs":1,"noerr":0,"x":301,"y":140,"wires":[["3b7f6362.24696c","def4328.f99acd"]]},{"id":"3b7f6362.24696c","type":"debug","z":"64589e61.60898","name":"時刻の表示","active":false,"console":"false","complete":"date","x":510,"y":100,"wires":[]},{"id":"14d3087b.28646","type":"function","z":"64589e61.60898","name":"表へ書き込む","func":"msg.payload = \n{ \n\tDATE : msg.date.date,\n\tDAY : msg.date.day,\n\tHOUR : msg.date.hour,\n\tMINUTE : msg.date.minute,\n\tMONTH : msg.date.month,\n\tSECOND : msg.date.second,\n\tYEAR : msg.date.year,\n\tACCELX : msg.sensor.accelX,\n\tACCELY : msg.sensor.accelY,\n\tACCELZ : msg.sensor.accelZ,\n\tAMBIENTTEMP : msg.sensor.ambientTemp,\n\tGYROX : msg.sensor.gyroX,\n\tGYROY : msg.sensor.gyroY,\n\tGYROZ : msg.sensor.gyroZ,\n\tHUMIDITY : msg.sensor.humidity,\n\tLIGHT : msg.sensor.light,\n    MAGX : msg.sensor.magX,\n\tMAGY :msg.sensor.magY,\n\tMAGZ : msg.sensor.magZ,\n\tOBJECTTEMP : msg.sensor.objectTemp\n};\n\nreturn msg;\n","outputs":1,"noerr":0,"x":520,"y":220,"wires":[["ba9d26f1.6a516","ecfd037.e72c4"]]},{"id":"8bcc302e.8dbd58","type":"function","z":"64589e61.60898","name":"センサー値を出力","func":"var sampling_min_interval = 10;     // 10分毎にDBヘ書き込み\nvar sampling_sec_interval = 60;     // データを出力する間隔\n\n/*\nvar sum = 0, average = 0;\nvar sen1 = Math.floor(Math.random () * 10) + 1; // センサー値を生成(シミュレート)\n\nif ( !context.array ) {\n    context.array = new Array (10); //直近10件分を保持\n}\nvar shifted = context.array.shift();\ncontext.array.push(sen1);           // 最新の値を保存\nvar length = context.array.length;\n\nfor (k=0; k<length; k++) {\n        sum = sum + context.array[k];   // 合計を算出\n}\n\nvar hour = JSON.stringify(msg.date.hour);\nvar min_org  = JSON.stringify(msg.date.minute);\nvar min = ( \"0\" + min_org ).substr( -2 );       // 一桁分の場合、二桁に\nvar sec_org  = JSON.stringify(msg.date.second);\nvar sec = ( \"0\" + sec_org ).substr( -2 );       // 一桁秒の場合、二桁に\nvar time = hour + \":\" + min + \":\" + sec;\n\naverage = sum / length;\nvar data = [[time],[sen1],[average]];\nmsg.sensor.average = average;\n*/\nif ( ( msg.date.second % sampling_sec_interval ) !== 0 ) return;\nif ( ( msg.date.minute % sampling_min_interval ) !== 0 ) return;\nreturn msg;\n","outputs":1,"noerr":0,"x":310,"y":220,"wires":[["14d3087b.28646"]]},{"id":"b7faf05f.7d756","type":"ibmiot in","z":"64589e61.60898","authentication":"quickstart","apiKey":"","inputType":"evt","deviceId":"","applicationId":"","deviceType":"+","eventType":"+","commandType":"","format":"json","name":"IBM IoT","service":"quickstart","allDevices":"","allApplications":"","allDeviceTypes":true,"allEvents":true,"allCommands":"","allFormats":"","x":90,"y":140,"wires":[["6d18f085.c1b5d8"]]},{"id":"4144253.9dd2fdc","type":"http in","z":"64589e61.60898","name":"","url":"/test28","method":"get","swaggerDoc":"","x":110,"y":380,"wires":[["1f8c6452.0e2c14"]]},{"id":"fdd5ab25.ad1cd8","type":"debug","z":"64589e61.60898","name":"op","active":false,"console":"false","complete":"payload.op","x":670,"y":360,"wires":[]},{"id":"d1c0278d.5bf49","type":"template","z":"64589e61.60898","name":"htmlを返す","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","template":"<!DOCTYPE html>\n<html lang=\"ja\">\n<head>\n   <meta charset=\"utf-8\">\n   <title>データベースからのIoTデータ表示</title>\n      <script src=\"https://d3js.org/d3.v4.min.js\"></script>\n\n   <style type=\"text/css\">\n         /* ここにスタイルルールを追加します */\n      .axis path,\n      .axis line {\n         fill: none;\n         stroke: black;\n         shape-rendering: crispEdges;\n      }\n      .axis text {\n         font-family: sans-serif;\n         font-size: 11px;\n      }\n   </style>\n\n   <div id=\"op\" foo={{payload.op}}/>\n\n<script type=\"text/javascript\">\n\nvar op_a = document.getElementById( 'op' ).getAttribute( 'foo' );\t//データを取得\nop_a = op_a.substr( 0, op_a.length-1 ) ;\t//末尾の\"/\"でエラーになるので\nvar op_a2 = JSON.parse(op_a);\t//JSON文字列からjavascriptオブジェクトを復元\n\nvar op_a3 = new Array();\nfor(var i in op_a2){\n\top_a3.push(op_a2[i].AMBIENTTEMP);\t//AMBIENTTEMPを取り出して配列op_a3に順次格納\n}\n\nvar op_a5 = new Array();\nfor(var i in op_a2){\n\top_a5.push(op_a2[i].HOUR + \":\" + (( \"0\" + op_a2[i].MINUTE ).substr( -2 )));\n}\n\n   // 幅( Width )と高さ( height )\n   var w = 800;\n   var h = 300;\n   var zoom =5;\n   var barPadding = 1;  // 棒グラフの棒と棒の間隔\n   var margin = 30;     // グラフ表示域のまわりの余白\n   \n   var dataset = op_a3;\n   var datasetT = op_a5;\n   \n   // スケール関数の生成\n   var xScale = d3.scaleLinear()\n         .domain([0, d3.max(dataset, function(d) { return d; })])\n         .range([margin, w + margin * 2]);\n\n   var yScale = d3.scaleLinear()\n            .domain([0, (h-margin) / zoom]) // Y軸のスケールを棒グラフと一致させる\n            .range([h-margin, 0]);    // Y軸表示場所\n\n   // X 軸の定義\n   var xAxis = d3.axisBottom()\n        .scale(xScale);\n\n   // Y 軸の定義\n   var yAxis = d3.axisLeft(yScale);\n   \n   // SVG 要素の生成\n   var canvas = d3.select(\"body\")\n         .append(\"svg\")\n         .attr(\"width\", w)\n         .attr(\"height\", h);\n\n   canvas.selectAll(\"rect\")\n         .data(dataset)\n         .enter()\n         .append(\"rect\")\n         .attr(\"x\", function(d, i) {\n            return i * ((w-margin) / dataset.length) + margin;\n         })\n         .attr(\"y\", function(d) {\n            return h - (d * zoom) - margin;\n         })\n         .attr(\"width\", (w-margin) / dataset.length - barPadding)\n         .attr(\"height\", function(d) {\n            return d * zoom;\n         })\n         .attr(\"fill\", function(d) {\n//            return \"rgb(0, 0, \" + ( ( (d-20) * 10 ) + 100 ) + \")\";\n            return \"rgb(0, 51, 255)\";\n                     });\n\t\t \n   canvas.selectAll(\"text\")\n         .data(datasetT)\n         .enter()\n         .append(\"text\")\n         .text(function(d) {\n            return d;\n         })\n         .attr(\"text-anchor\", \"middle\")\n          .attr(\"x\", function(d, i) {\n            return i * ((w-margin) / dataset.length) + margin + ((w-margin) / dataset.length - barPadding ) / 2;\n         })\n        .attr(\"y\", function(d) {\n            return h;\n         })\n         .attr(\"font-family\", \"sans-serif\")\n         .attr(\"font-size\", \"11px\")\n         .attr(\"fill\", \"black\");\n\n/*    canvas.selectAll(\"text\")\n         .data(dataset)\n         .enter()\n         .append(\"text\")\n         .text(function(d) {\n            return d;\n         })\n         .attr(\"text-anchor\", \"middle\")\n         .attr(\"x\", function(d, i) {\n            return i * ((w-margin) / dataset.length) + (w / dataset.length - barPadding) / 2  + margin;\n         })\n         .attr(\"y\", function(d) {\n            return h - (d * 4) + 14  - margin;\n         })\n         .attr(\"font-family\", \"sans-serif\")\n         .attr(\"font-size\", \"11px\")\n         .attr(\"fill\", \"white\");\n*/\n   // X 軸の生成\n//   canvas.append(\"g\")\n//         .attr(\"class\", \"axisBottom\")\n//         .attr(\"transform\", \"translate(0,\" + (h - margin) + \")\")\n//         .call(xAxis);\n\n   // Y 軸の生成\n   canvas.append(\"g\")\n         .attr(\"class\", \"axisLeft\")\n         .attr(\"transform\", \"translate(\" + margin + \",0)\")\n         .call(yAxis);\n\t\t \n\t\t \n   var m =  0;\n   var mh = 0;\n   var mm = 0;\n   var mt = 0;\n   for(var i in op_a2){\n\t   if (m < Number(op_a2[i].AMBIENTTEMP)) {\n\t       m = Number(op_a2[i].AMBIENTTEMP);\n\t\t   mh = op_a2[i].HOUR;\n\t\t   mm = ( \"0\" + op_a2[i].MINUTE ).substr( -2 ) ;\n\t\t   mt = op_a2[i].AMBIENTTEMP;\n    //console.log(\"max found was \" + mh + \":\" + mm + \" \" + mt);\n\t   }\n   }\n\n   m = mh + \":\" + mm;\n\n   window.onload = function onLoad() {\n      var target1 = document.getElementById(\"output1\");\n         target1.innerHTML = m;\n      var target2 = document.getElementById(\"output2\");\n         target2.innerHTML = mt;\n\t}\n\t\n</script>\n</head>\n<body>\n\n<div id=\"a-box\" style=\"background-color: #87cefa; padding: 20px;\">\n\t<h1>データベースからのIoTデータ表示</h1>\n\t<br />\n\t<p>\n\t\tデータベースに保存されたIoTデータを可視化します<br />\n\t</p>\n</div>\n\n<div id=\"b-box\" style=\"background-color: #ecf2fe; padding: 20px; \">\n\t\t<h2>最高値の時刻</h2>\n\t\t\t<div style=\"text-align:left\" id=\"output0\"></div>\n\t\t\t<div style=\"text-align:left;font-size: 18pt\" id=\"output1\"></div>\n\t\t<h2>最高値 </h2>\n\t\t\t<span style=\"text-align:left;font-size: 18pt\" id=\"output2\"></span> ℃\n</div>\n</body>\n</html>","x":690,"y":420,"wires":[["5d901718.3c51f8"]]},{"id":"5d901718.3c51f8","type":"http response","z":"64589e61.60898","name":"","x":850,"y":420,"wires":[]},{"id":"422b2203.7d68e4","type":"function","z":"64589e61.60898","name":"stringify","func":"var m = JSON.stringify(msg.payload);\nmsg.payload.op = m;\nreturn msg;","outputs":1,"noerr":0,"x":520,"y":380,"wires":[["d1c0278d.5bf49","fdd5ab25.ad1cd8"]]},{"id":"def4328.f99acd","type":"function","z":"64589e61.60898","name":"センサー値を待避","func":"msg.sensor = {\n        \"accelX\": msg.payload.d.accelX,\n        \"accelY\": msg.payload.d.accelY,\n        \"accelZ\": msg.payload.d.accelZ,\n        \"ambientTemp\": msg.payload.d.ambientTemp,\n        \"gyroX\": msg.payload.d.gyroX,\n        \"gyroY\": msg.payload.d.gyroY,\n        \"gyroZ\": msg.payload.d.gyroZ,\n        \"humidity\": msg.payload.d.humidity,\n        \"light\": msg.payload.d.light,\n        \"magX\": msg.payload.d.magX,\n        \"magY\": msg.payload.d.magY,\n        \"magZ\": msg.payload.d.magZ,\n        \"objectTemp\": msg.payload.d.objectTemp,\n};\n\nreturn msg;\n","outputs":1,"noerr":0,"x":530,"y":140,"wires":[["8bcc302e.8dbd58"]]},{"id":"ba9d26f1.6a516","type":"debug","z":"64589e61.60898","name":"書き込みデータ","active":true,"console":"false","complete":"payload","x":740,"y":260,"wires":[]},{"id":"838fa4c.eef7fd8","type":"comment","z":"64589e61.60898","name":"DBからのデータを可視化","info":"","x":150,"y":340,"wires":[]},{"id":"ecfd037.e72c4","type":"dashDB out","z":"64589e61.60898","service":"","table":"SENSOR2DB","name":"dashDBへ書き込み","x":750,"y":220,"wires":[]},{"id":"1f8c6452.0e2c14","type":"dashDB in","z":"64589e61.60898","service":"","query":"select hour,minute,ambienttemp, objecttemp  from SENSOR2DB where (minute%10)=0;","params":"","name":"dashDBから読み込み","x":320,"y":380,"wires":[["422b2203.7d68e4"]]}]

#サンプル3:Alps IoT Smart ModuleからのIoTデータを指定した間隔でdashDBへ書き込む
Alps IoT Smart ModuleからのIoTデータを格納する表は下記のようなDDLで作成可能です。

CREATE TABLE "ALPSIOT"
(
  "DATE" BIGINT,
  "DAY" BIGINT,
  "HOUR" BIGINT,
  "MINUTE" BIGINT,
  "MONTH" BIGINT,
  "SECOND" BIGINT,
  "YEAR" BIGINT,
  "ACCELX" VARCHAR(20),
  "ACCELY" VARCHAR(20),
  "ACCELZ" VARCHAR(20),
  "AMBIENTLIGHT" VARCHAR(20),
  "GEOMAGNETICX" VARCHAR(20),
  "GEOMAGNETICY" VARCHAR(20),
  "GEOMAGNETICZ" VARCHAR(20),
  "HUMIDITY" VARCHAR(20),
  "PRESSURE" VARCHAR(20),
  "UV" VARCHAR(20)
);

下記のフローではAlps IoT Smart ModuleからのIoTデータを指定した間隔でdashDBへ書き込みます

スクリーンショット 2017-01-16 12.57.00.png

実物のセンサータグからのデータのDashDBへの書き込み
[{"id":"32a7a763.d28538","type":"ibmiot in","z":"1a18e39.b66a99c","authentication":"quickstart","apiKey":"","inputType":"evt","deviceId":"","applicationId":"","deviceType":"+","eventType":"+","commandType":"","format":"json","name":"IBM IoT","service":"quickstart","allDevices":"","allApplications":"","allDeviceTypes":true,"allEvents":true,"allCommands":"","allFormats":"","x":90,"y":80,"wires":[["6b0cda13.f42dfc"]]},{"id":"6b0cda13.f42dfc","type":"function","z":"1a18e39.b66a99c","name":"日付時刻の追加","func":"var d = new Date();\nvar localTime = d.getTime();\nvar localOffset = d.getTimezoneOffset() * 60000;\nvar utc = localTime + localOffset;\nvar offset = -9.0;\nvar result = utc - (3600000 * offset);\nvar date = parseInt(new Date(result) / 1000);\nvar dt = new Date(result);\n\nvar year = dt.getFullYear();\nvar month = dt.getMonth()+1;\nvar day = dt.getDate();\nvar hour = dt.getHours();\nvar minute = dt.getMinutes();\nvar second = dt.getSeconds();\nif (!msg.payload) {\n    msg.payload = { \"initial\": \"value\" };\n}\nmsg.date = {\n        \"date\": date,\n        \"year\": year,\n        \"month\": month,\n        \"day\": day,\n        \"hour\": hour,\n        \"minute\": minute,\n        \"second\": second\n}\nreturn msg;","outputs":1,"noerr":0,"x":240,"y":80,"wires":[["7720544a.dce0c4"]]},{"id":"7720544a.dce0c4","type":"function","z":"1a18e39.b66a99c","name":"データ整理","func":"if (msg.payload.d.pressure > 0 ) {\n    context.set('ps', msg.payload.d.pressure);\n    context.set('hm', msg.payload.d.humidity); \n    context.set('uv', msg.payload.d.uv); \n    context.set('al', msg.payload.d.ambientLight); \n} else {\n}\nif (msg.payload.d.accelX ) {\n    msg.payload = { \n    \tDATE : msg.date.date,\n    \tDAY : msg.date.day,\n    \tHOUR : msg.date.hour,\n    \tMINUTE : msg.date.minute,\n    \tMONTH : msg.date.month,\n    \tSECOND : msg.date.second,\n    \tYEAR : msg.date.year,\n    \tACCELX : msg.payload.d.accelX,\n    \tACCELY : msg.payload.d.accelY,\n    \tACCELZ : msg.payload.d.accelZ,\n    \tAMBIENTLIGHT : context.get('al'),\n        GEOMAGNETICX : msg.payload.d.geoMagneticX,\n        GEOMAGNETICY : msg.payload.d.geoMagneticY,\n        GEOMAGNETICZ : msg.payload.d.geoMagneticZ,\n    \tHUMIDITY : context.get('hm'),\n    \tPRESSURE :  context.get('ps'),\n        UV :  context.get('uv')\n    };\n    return msg;\n}","outputs":1,"noerr":0,"x":410,"y":80,"wires":[["c0bfac0d.b874f"]]},{"id":"c0bfac0d.b874f","type":"function","z":"1a18e39.b66a99c","name":"5秒毎に書き出し","func":"if (msg.date.second % 5 === 0 && msg.date.second != context.get('sec')) {\n    context.set('sec', msg.date.second);\n    return msg;\n}","outputs":1,"noerr":0,"x":590,"y":80,"wires":[["a647df73.04592"]]},{"id":"a647df73.04592","type":"dashDB out","z":"1a18e39.b66a99c","dashDB":"","service":"_ext_","table":"ALPSIOT","name":"dashDBへ書き込み","x":790,"y":80,"wires":[]}]

5
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?