TensorFlow v1.1 / 移行 > tf.pack()はtf.stack()になった

  • 1
    いいね
  • 0
    コメント
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 16.04 LTS desktop amd64
TensorFlow v1.1.0 (以下TF)
cuDNN v5.1 for Linux
CUDA v8.0
Python 3.5.2

TensorFlow / ADDA > 線形方程式の初期値用データの学習 > 学習コード:v0.3 / 学習結果

Ubuntu 14.04 + TensorFlow v0.8の環境からUbuntu 16.04 + TensorFlow v1.1.0に移行した。

TF v0.8用のコードを実行しようとすると以下のようになる。

$ python3 learnExr_170422.py 
Traceback (most recent call last):
  File "learnExr_170422.py", line 53, in <module>
    inputs = tf.pack([xpos, ypos, zpos])
AttributeError: module 'tensorflow' has no attribute 'pack'

https://github.com/tensorflow/tensorflow/issues/7550

As far as I know, tf.pack has been renamed as tf.stack.

tf.pack()からtf.stack()に変わったとのこと。

tf.stack()に変更すると動作した。

learnExr_170504.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np

'''
v0.5 MAr. 04, 2017
  - use [tf.stack] instead of [tf.pack]
=== on Ubuntu 16.04 / CUDA8 / cuDNN5.1 / Python 3 ===
v0.4 Mar. 03, 2017
  - learn [Exr, Exi, Eyr, Eyi, Ezr, Ezi]
v0.3 Mar. 03, 2017
  - learn [Exr] and [Exi]
  - add [Eyr, Eri, Ezr, Ezi] for decode_csv()
v0.2 Apr. 29, 2017
  - save to [model_variables_170429.npy]
  - learn [Exr] only, instead of [Exr, Exi]
v0.1 Apr. 23, 2017
  - change [NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN] from [100] to [9328]
  - change input layer's node from [2] to [3]
  - [input.csv] has 9 columns
=== branched from [learn_xxyyfunc_170321.py] to [learnExr_170422.py] ===
v0.5 Apr. 01, 2017
  - change network from [7,7,7] to [100, 100, 100]
v0.4 Mar. 31, 2017
  - calculate [capacity] from [min_queue_examples] and [batch_size]
v0.3 Mar. 24, 2017
  - change [capacity] from 100 to 40
v0.2 Mar. 24, 2017
  - change [capacity] from 40 to 100
  - output [model_variables] after training
v0.1 Mar. 22, 2017
  - learn mapping of R^2 input to R^2 output
     + using data prepared by [prep_data_170321.py]
  - branched from sine curve learning at
    http://qiita.com/7of9/items/ce58e66b040a0795b2ae
'''

# codingrule:PEP8


filename_queue = tf.train.string_input_producer(["input.csv"])

# prase CSV
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
def_rec = [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]]
wrk = tf.decode_csv(value, record_defaults=def_rec)
xpos, ypos, zpos, Exr, Exi, Eyr, Eyi, Ezr, Ezi = wrk
inputs = tf.stack([xpos, ypos, zpos])
output = tf.stack([Exr, Exi, Eyr, Eyi, Ezr, Ezi])

batch_size = 4  # [4]
# Ref: cifar10_input.py
min_fraction_of_examples_in_queue = 0.2  # 0.4
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 9328
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                         min_fraction_of_examples_in_queue)
#
inputs_batch, output_batch = tf.train.shuffle_batch(
    [inputs, output], batch_size, capacity=min_queue_examples + 3 * batch_size,
    min_after_dequeue=batch_size)

input_ph = tf.placeholder("float", [None, 3])
output_ph = tf.placeholder("float", [None, 6])

## network
hiddens = slim.stack(input_ph, slim.fully_connected, [100, 100, 100],
                     activation_fn=tf.nn.sigmoid, scope="hidden")
prediction = slim.fully_connected(
    hiddens, 6, activation_fn=None, scope="output")
loss = tf.contrib.losses.mean_squared_error(prediction, output_ph)

train_op = slim.learning.create_train_op(loss, tf.train.AdamOptimizer(0.001))

init_op = tf.initialize_all_variables()

with tf.Session() as sess:
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        sess.run(init_op)
        for i in range(90000):  # 30000
            inpbt, outbt = sess.run([inputs_batch, output_batch])
            _, t_loss = sess.run([train_op, loss],
                                 feed_dict={input_ph: inpbt, output_ph: outbt})

            if (i+1) % 100 == 0:
                print("%d,%f" % (i+1, t_loss))
                sys.stdout.flush()

    finally:
        coord.request_stop()

    # output the model
    model_variables = slim.get_model_variables()
    res = sess.run(model_variables)
    np.save('model_variables_170429.npy', res)

    coord.join(threads)