2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

TensorFlow v1.1 / 移行 > tf.pack()はtf.stack()になった

Last updated at Posted at 2017-05-04
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 16.04 LTS desktop amd64
TensorFlow v1.1.0 (以下TF)
cuDNN v5.1 for Linux
CUDA v8.0
Python 3.5.2

TensorFlow / ADDA > 線形方程式の初期値用データの学習 > 学習コード:v0.3 / 学習結果

Ubuntu 14.04 + TensorFlow v0.8の環境からUbuntu 16.04 + TensorFlow v1.1.0に移行した。

TF v0.8用のコードを実行しようとすると以下のようになる。

$ python3 learnExr_170422.py 
Traceback (most recent call last):
  File "learnExr_170422.py", line 53, in <module>
    inputs = tf.pack([xpos, ypos, zpos])
AttributeError: module 'tensorflow' has no attribute 'pack'

As far as I know, tf.pack has been renamed as tf.stack.

tf.pack()からtf.stack()に変わったとのこと。

tf.stack()に変更すると動作した。

learnExr_170504.py
# !/usr/bin/env python
# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np

'''
v0.5 MAr. 04, 2017
  - use [tf.stack] instead of [tf.pack]
=== on Ubuntu 16.04 / CUDA8 / cuDNN5.1 / Python 3 ===
v0.4 Mar. 03, 2017
  - learn [Exr, Exi, Eyr, Eyi, Ezr, Ezi]
v0.3 Mar. 03, 2017
  - learn [Exr] and [Exi]
  - add [Eyr, Eri, Ezr, Ezi] for decode_csv()
v0.2 Apr. 29, 2017
  - save to [model_variables_170429.npy]
  - learn [Exr] only, instead of [Exr, Exi]
v0.1 Apr. 23, 2017
  - change [NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN] from [100] to [9328]
  - change input layer's node from [2] to [3]
  - [input.csv] has 9 columns
=== branched from [learn_xxyyfunc_170321.py] to [learnExr_170422.py] ===
v0.5 Apr. 01, 2017
  - change network from [7,7,7] to [100, 100, 100]
v0.4 Mar. 31, 2017
  - calculate [capacity] from [min_queue_examples] and [batch_size]
v0.3 Mar. 24, 2017
  - change [capacity] from 100 to 40
v0.2 Mar. 24, 2017
  - change [capacity] from 40 to 100
  - output [model_variables] after training
v0.1 Mar. 22, 2017
  - learn mapping of R^2 input to R^2 output
     + using data prepared by [prep_data_170321.py]
  - branched from sine curve learning at
    http://qiita.com/7of9/items/ce58e66b040a0795b2ae
'''

# codingrule:PEP8


filename_queue = tf.train.string_input_producer(["input.csv"])

# prase CSV
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
def_rec = [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]]
wrk = tf.decode_csv(value, record_defaults=def_rec)
xpos, ypos, zpos, Exr, Exi, Eyr, Eyi, Ezr, Ezi = wrk
inputs = tf.stack([xpos, ypos, zpos])
output = tf.stack([Exr, Exi, Eyr, Eyi, Ezr, Ezi])

batch_size = 4  # [4]
# Ref: cifar10_input.py
min_fraction_of_examples_in_queue = 0.2  # 0.4
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 9328
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                         min_fraction_of_examples_in_queue)
#
inputs_batch, output_batch = tf.train.shuffle_batch(
    [inputs, output], batch_size, capacity=min_queue_examples + 3 * batch_size,
    min_after_dequeue=batch_size)

input_ph = tf.placeholder("float", [None, 3])
output_ph = tf.placeholder("float", [None, 6])

## network
hiddens = slim.stack(input_ph, slim.fully_connected, [100, 100, 100],
                     activation_fn=tf.nn.sigmoid, scope="hidden")
prediction = slim.fully_connected(
    hiddens, 6, activation_fn=None, scope="output")
loss = tf.contrib.losses.mean_squared_error(prediction, output_ph)

train_op = slim.learning.create_train_op(loss, tf.train.AdamOptimizer(0.001))

init_op = tf.initialize_all_variables()

with tf.Session() as sess:
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        sess.run(init_op)
        for i in range(90000):  # 30000
            inpbt, outbt = sess.run([inputs_batch, output_batch])
            _, t_loss = sess.run([train_op, loss],
                                 feed_dict={input_ph: inpbt, output_ph: outbt})

            if (i+1) % 100 == 0:
                print("%d,%f" % (i+1, t_loss))
                sys.stdout.flush()

    finally:
        coord.request_stop()

    # output the model
    model_variables = slim.get_model_variables()
    res = sess.run(model_variables)
    np.save('model_variables_170429.npy', res)

    coord.join(threads)
2
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?