AWS
re

re:Invent 2017にみるAWSとクラウドの進化する方向性

More than 1 year has passed since last update.

11月27日から12月1日までの5日間にわたり、ラスベガスに4万3,000人の人を集めたAWSの年次イベント”re:Invent 2017”。AWS CEOのAndy JassyやAmazon CTOのWerner Vogelsなどのキーノートでは、今年もさまざまな真サービスが発表されました。仮想環境の管理を用意にするKubernetesをマネージド型で提供するサービスやサーバーレスのデータベースサービス、マシンラーニングのモデル構築から学習、デプロイ、API化まで一気通貫でサポートするサービスなどオンラインメディアからピックアツプして紹介します。

※下記サイトからの転載。ビッグデータ・AIなどに関するトピックを毎週取り上げています。
TechCrowd: https://www.techcrowd.jp/related/

クラウドは次のフェーズへ――、「AWS re:Invent 2017」でアンディ・ジャシーCEOが示した5年間の総決算

クラウドWatchのre:Invent 2017のレポート記事です。Andy Jassyのキーノートで発表された新サービスを紹介しながら、AWSが描こうとしているあらたなクラウドの世界を展望してくれています。

まずは、各種メディアでも今年のre:Invent 2017での新サービス発表の中でも一番にとりあげられている「Amazon Elastic Container Service for Kubernetes(Amazon EKS)」。Kubernetesのマネージドサービスであり、ユーザーのVPC内でコンテナが稼働するインスタンスを起動できるほか、CloudTrailやCloudWatch、ELB(Elastic Load Balancing)といったAWSのさまざまなサービスとKubernetesのスムーズな連携が可能です。

Andy Jassy CEOはキーノートの中で、「インスタンス」「コンテナ」「サーバーレス」の3つのアーキテクチャをAWSのコンピュートリソースとして位置づけ。クラウドの基盤を支えるアーキテクチャがインスタンスという仮想サーバだけだった時代からコンテナやサーバーレスまで含むものにはっきりと拡張してきていることを感じさせます。

次に、Andy Jassy CEOがとりあげたのはデータベース。プロプライエタリなRDBからの解放、データベースの自由を実現するものとして、AWSの各種データベース機能に関する新サービスを発表。その中でももっとも注目を集めたのはAurora Multi-Master。リード重視のAuroraがリード/ライトの両方でスケールできるようになるとのこと。現時点ではシングルリージョン/マルチマスターのみのプレビュー提供だが、Andy Jassy CEOは「2018年の早い段階でマルチリージョン/マルチマスタに対応する」とのべています。

データアナリティクスをより効率的にするものとして発表されたのが、「Amazon S3 Select」と「Amazon Glacer Select」。いずれも必要なオブジェクトデータのみを標準的なSQLを使ってフィルタリング(SELECT)する機能。オブジェクト全体にアクセスする必要がなくなるため、データアクセスのパフォーマンスが最大400%と劇的に向上するとのこと。S3やGlacerが単なるオブジェクトストレージからデータレイクへと進化しつつあることを示す機能追加です。

また、マシンラーニングをより身近な存在とする新サービスもいろいろ発表されています。もっとも注目されているのが”Amazon SageMaker”。マシンラーニングのモデル構築から学習、デプロイ、API化まで一気通貫でサポートするスケーラブルなマネージドサービス。(GA、バージニア/オレゴン/オハイオ/アイルランド)

モデル作成にはデータサイエンスで標準的に使われているJupyter Notebook環境をワンクリックで設定できるほか、トレーニングもデプロイもワンクリックで利用可能。まさにオールインワンのマシンラーニングサービスとのことです。

AWSのSageMakerを使えばふつうのデベロッパーが機械学習のモデルを作れる

TechCrunshのre:Invent 2017レポート記事で、特に機械学習のモデル制作プロセスを管理するためのフレームワークを提供し、そのプロセスに含まれる複雑面倒な部分を取り去る Amazon SageMakerに焦点をあてたものです。

この新しいツールには、三つの主要部分「Notebook」「Jobs」「Models」があるとのこと。Notebookはオープンソースの標準的なツールJupyter Notebooksを使って、モデルのベースとなるデータを概観し整理する。

re:Inventのステージで、Andy Jassy CEOはSageMakerの柔軟性を強調。すぐに簡単に使えるツールとして使ってもよいし、自分のフレームワークを持ち込んでもよい。どちらの場合でも、そしてソースが何であっても、サービスはもっともポピュラーなアルゴリズム向けに調整されているとのこと。

Amazon、re:inventカンファレンスでグラフDB、Neptune発表

TechCrunshのre:Invent 2017レポート記事で、特にAWSの新しいデータベース、Amazon Neptuneに焦点をあてたものです。Amazon Neptuneは、グラフ関係の処理を目的としたサービス。サービスにソーシャルネットワーク的要素を組み込もうとしているならこのデータベースは役に立つかもしれません。

伝統的なリレーショナルDBの問題点は、もともと複雑なソーシャルグラフを扱うようにデザインされていないこと。そのためRDBでは友達関係やフォロー関係のリストを扱うのが難しく、ソーシャルグラフから共通の友達を抽出しようとすると、そのたびにきわめて複雑なクエリーを発行する必要がありました。

Neptuneは数十億に上るソーシャル関係を処理するために最適化されており、複雑なソーシャルグラフも高速に処理し、一つのクエリーを処理するのに1000分の1秒単位の時間しかかからないとのこと。

AWS re:Invent 2017、データベースもサーバーレスの時代へ

週刊BCNのre:Invent 2017レポート記事。数多くの新サービスが発表されていくなかで、
最も盛り上がったのがデータベース関連の新サービスとのことで、「Amazon Aurora Serverless」などを紹介しています。

「Amazon Aurora Serverless」は、利用した分だけ課金されるサーバーレスのリレーショナルデータベース。インスタンスの管理が不要で、自動でスケール。サーバーレスサービスの「AWS Lambda」と同様、閾値などをトリガーにSQL文を実行するなど、まずはIoT分野での活用が想定されるとのこと。また、クラウドネイティブなシステムにおいても、サーバーレスの特徴を生かした活用方法に期待が高まるとのことです。