LoginSignup
0
0

More than 5 years have passed since last update.

Kaggle (Titanic) x Domain Adaptation の実装に関するメモ

Posted at

Reference

Titanic: Machine Learning from Disaster

Google Colab + Kaggle (Titanic) の実装に関するメモ

Data

train = pd.read_csv('/content/train.csv')
test = pd.read_csv('/content/test.csv')

train['Age'] = train['Age'].fillna(train['Age'].median())
train['Embarked'] = train['Embarked'].fillna('S')

train['Sex'][train['Sex'] == 'male'] = 0
train['Sex'][train['Sex'] == 'female'] = 1
train['Embarked'][train['Embarked'] == 'S' ] = 0
train['Embarked'][train['Embarked'] == 'C' ] = 1
train['Embarked'][train['Embarked'] == 'Q'] = 2

#train.head(10)

test['Age'] = test['Age'].fillna(test['Age'].median())
test['Sex'][test['Sex'] == 'male'] = 0
test['Sex'][test['Sex'] == 'female'] = 1
test['Embarked'][test['Embarked'] == 'S'] = 0
test['Embarked'][test['Embarked'] == 'C'] = 1
test['Embarked'][test['Embarked'] == 'Q'] = 2
test.Fare[152] = test.Fare.median()

#test.head(10)

features = train[['Pclass', 'Sex', 'Age', 'Fare']].values
target = train['Survived'].values
features_test = test[['Pclass', 'Sex', 'Age', 'Fare']].values

train_indices_s = np.random.choice(len(features), round((len(features)*0.8)), \
                                replace = False)
test_indices_s = np.array(list(set(range(len(features))) - set(train_indices)))
train_indices_t = np.random.choice(len(features_test), round((len(features_test)*0.8)), \
                                replace = False)
test_indices_t = np.array(list(set(range(len(features_test))) - set(train_indices_t)))

x_s_train = features[train_indices_s]
x_s_test = features[test_indices_s]
y_s_train = np.identity(2)[target[train_indices_s]]
y_s_test = np.identity(2)[target[test_indices_s]]
x_t_train = features[train_indices_t]
x_t_test = features[test_indices_t]

def normalize_cols(m):
  col_max = m.max(axis = 0)
  col_min = m.min(axis = 0)
  return (m - col_min) / (col_max - col_min)

x_s_train = normalize_cols(x_s_train)
x_s_test = normalize_cols(x_s_test)
x_t_train = normalize_cols(x_t_train)
x_t_test = normalize_cols(x_t_test)
x_input = normalize_cols(features_test)

Sample Code

# Domain Adaptation

class DA():
  def __init__(self):
    pass

  def weight_variable(self, name, shape):
    initializer = tf.truncated_normal_initializer(mean = 0.0, stddev = 0.01, dtype = tf.float32)
    return tf.get_variable(name, shape, initializer = initializer)

  def bias_variable(self, name, shape):
    initializer = tf.constant_initializer(value = 0.0, dtype = tf.float32)
    return tf.get_variable(name, shape, initializer = initializer)

  def f_extractor(self, x, n_in, n_units, keep_prob, reuse = False):
    with tf.variable_scope('f_extractor', reuse = reuse):
      w = self.weight_variable('w', [n_in, n_units])
      b = self.bias_variable('b', [n_units])

      f = tf.matmul(x, w) + b

      # batch norm
      batch_mean, batch_var = tf.nn.moments(f, [0])
      f = (f - batch_mean) / (tf.sqrt(batch_var) + 1e-10)

      # dropout
      #f = tf.nn.dropout(f, keep_prob)

      # relu
      f = tf.nn.relu(f)

      # leaky relu
      #f = tf.maximum(0.2 * f, f)

    return f

  def classifier_d(self, x, n_units_f, n_units_d, n_domains, keep_prob, reuse = False):

    with tf.variable_scope('classifier_d', reuse = reuse):
      w_1 = self.weight_variable('w_1', [n_units_f, n_units_d])
      b_1 = self.bias_variable('b_1', [n_units_d])

      d = tf.matmul(x, w_1) + b_1

      # batch norm
      #batch_mean, batch_var = tf.nn.moments(d, [0])
      #d = (d - batch_mean) / (tf.sqrt(batch_var) + 1e-10)

      # relu
      d = tf.nn.relu(d)

      # dropout
      #d = tf.nn.dropout(d, keep_prob)

      w_2 = self.weight_variable('w_2', [n_units_d, n_domains])
      b_2 = self.bias_variable('b_2', [n_domains])

      d = tf.matmul(d, w_2) + b_2
      logits = d

    return logits

  def classifier_c(self, x, n_units_f, n_units_c, n_classes, keep_prob, reuse = False):

    with tf.variable_scope('classifier_c', reuse = reuse):
      w_1 = self.weight_variable('w_1', [n_units_f, n_units_c])
      b_1 = self.bias_variable('b_1', [n_units_c])

      l = tf.matmul(x, w_1) + b_1

      # batch norm
      #batch_mean, batch_var = tf.nn.moments(l, [0])
      #l = (l - batch_mean) / (tf.sqrt(batch_var) + 1e-10)

      # relu
      l = tf.nn.relu(l)

      # dropout
      #l = tf.nn.dropout(l, keep_prob)

      w_2 = self.weight_variable('w_2', [n_units_c, n_classes])
      b_2 = self.bias_variable('b_2', [n_classes])

      l = tf.matmul(l, w_2) + b_2
      logits = l

    return logits

  def loss_cross_entropy(self, y, t):
    cross_entropy = - tf.reduce_mean(tf.reduce_sum(t * tf.log(tf.clip_by_value(y, 1e-10, 1.0)), axis = 1))
    return cross_entropy

  def loss_entropy(self, p):
    entropy = tf.reduce_mean(tf.reduce_sum(p * tf.log(tf.clip_by_value(p, 1e-10, 1.0)), axis = 1))
    return entropy

  def accuracy(self, y, t):
    correct_preds = tf.equal(tf.argmax(y, axis = 1), tf.argmax(t, axis = 1))
    accuracy = tf.reduce_mean(tf.cast(correct_preds, tf.float32))
    return accuracy

  def training(self, loss, learning_rate, var_list):
    optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate)
    train_step = optimizer.minimize(loss, var_list = var_list)
    return train_step

  def fit(self, x_s_train, x_s_test, y_s_train, y_s_test, x_t_train, x_t_test, \
          n_in, n_units_f, n_units_d, n_domains, \
          n_units_c, n_classes, lam, \
          learning_rate, n_iter, batch_size, show_step, is_saving, model_path):

    tf.reset_default_graph()

    x_s = tf.placeholder(shape = [None, n_in], dtype = tf.float32)
    y_s = tf.placeholder(shape = [None, n_classes], dtype = tf.float32)
    d_s = tf.placeholder(shape = [None, n_domains], dtype = tf.float32) 
    x_t = tf.placeholder(shape = [None, n_in], dtype = tf.float32)
    d_t = tf.placeholder(shape = [None, n_domains], dtype = tf.float32) 
    keep_prob = tf.placeholder(shape = [], dtype = tf.float32)

    feat_s = self.f_extractor(x_s, n_in, n_units_f, keep_prob, reuse = False)
    feat_t = self.f_extractor(x_t, n_in, n_units_f, keep_prob, reuse = True)

    feat = tf.concat([feat_s, feat_t], axis = 0)
    d = tf.concat([d_s, d_t], axis = 0)

    logits_d = self.classifier_d(feat, n_units_f, n_units_d, n_domains, keep_prob, reuse = False)
    probs_d = tf.nn.softmax(logits_d)

    loss_d = self.loss_cross_entropy(probs_d, d)

    logits_c_s = self.classifier_c(feat_s, n_units_f, n_units_c, n_classes, keep_prob, reuse = False)
    probs_c_s = tf.nn.softmax(logits_c_s)
    loss_c_s = self.loss_cross_entropy(probs_c_s, y_s)

    loss_f = - lam * loss_d

    var_list_f = tf.trainable_variables('f_extractor')
    var_list_d = tf.trainable_variables('classifier_d')
    var_list_c = tf.trainable_variables('classifier_c')

    var_list_f_c = var_list_f + var_list_c

    train_step_f = self.training(loss_f, learning_rate, var_list_f)
    train_step_d = self.training(loss_d, learning_rate, var_list_d)
    train_step_f_c = self.training(loss_c_s, learning_rate, var_list_f_c)

    acc_d =  self.accuracy(probs_d, d)
    acc_c_s =  self.accuracy(probs_c_s, y_s)

    init = tf.global_variables_initializer()
    saver = tf.train.Saver()

    with tf.Session() as sess:

      sess.run(init)

      history_loss_c_s_train = []
      history_loss_c_s_test = []
      history_acc_c_s_train = []
      history_acc_c_s_test = []

      history_loss_d_train = []
      history_loss_d_test = []
      history_acc_d_train = []
      history_acc_d_test = []

      history_loss_f_train = []
      history_loss_f_test = []

      for i in range(n_iter):
        # Training
        # class classification for f and c
        rand_index = np.random.choice(len(x_s_train), size = batch_size)
        x_batch = x_s_train[rand_index]
        y_batch = y_s_train[rand_index]

        feed_dict = {x_s: x_batch, y_s: y_batch, keep_prob: 1.0}
        sess.run(train_step_f_c, feed_dict = feed_dict)

        temp_loss_c_s = sess.run(loss_c_s, feed_dict = feed_dict)
        temp_acc_c_s = sess.run(acc_c_s, feed_dict = feed_dict)

        history_loss_c_s_train.append(temp_loss_c_s)
        history_acc_c_s_train.append(temp_acc_c_s)

        if (i + 1) % show_step == 0:
          print ('-' * 100)
          print ('Iteration: ' + str(i + 1) + \
                 '  Loss_c: ' + str(temp_loss_c_s) + '  Accuracy_c: ' + str(temp_acc_c_s))

        # domain classification for d
        rand_index = np.random.choice(len(x_s_train), size = batch_size//2)
        x_batch_s = x_s_train[rand_index]
        d_batch_s = np.ones(shape = [batch_size//2], dtype = np.int32) * 0
        d_batch_s = np.identity(n_domains)[d_batch_s]

        rand_index = np.random.choice(len(x_t_train), size = batch_size//2)
        x_batch_t = x_t_train[rand_index]
        d_batch_t = np.ones(shape = [batch_size//2], dtype = np.int32) * 1
        d_batch_t = np.identity(n_domains)[d_batch_t]

        feed_dict = {x_s: x_batch_s, d_s: d_batch_s, x_t: x_batch_t, d_t: d_batch_t, keep_prob: 1.0}
        sess.run(train_step_f, feed_dict = feed_dict)
        sess.run(train_step_d, feed_dict = feed_dict)

        temp_loss_f = sess.run(loss_f, feed_dict = feed_dict)
        temp_loss_d = sess.run(loss_d, feed_dict = feed_dict)
        temp_acc_d = sess.run(acc_d, feed_dict = feed_dict)

        history_loss_f_train.append(temp_loss_f)
        history_loss_d_train.append(temp_loss_d)
        history_acc_d_train.append(temp_acc_d)

        if (i + 1) % show_step == 0:
          print ('-' * 100)
          print ('Iteration: ' + str(i + 1) + \
                 '  Loss_d: ' + str(temp_loss_d) + '  Accuracy_d: ' + str(temp_acc_d))

        # Test
        # class classification for s
        rand_index = np.random.choice(len(x_s_test), size = batch_size)
        x_batch = x_s_test[rand_index]
        y_batch = y_s_test[rand_index]

        feed_dict = {x_s: x_batch, y_s: y_batch, keep_prob: 1.0}
        temp_loss_c_s = sess.run(loss_c_s, feed_dict = feed_dict)
        temp_acc_c_s = sess.run(acc_c_s, feed_dict = feed_dict)

        history_loss_c_s_test.append(temp_loss_c_s)
        history_acc_c_s_test.append(temp_acc_c_s)

        # domain classification for f and d
        rand_index = np.random.choice(len(x_s_test), size = batch_size//2)
        x_batch_s = x_s_test[rand_index]
        d_batch_s = np.ones(shape = [batch_size//2], dtype = np.int32) * 0
        d_batch_s = np.identity(n_domains)[d_batch_s]

        rand_index = np.random.choice(len(x_t_test), size = batch_size//2)
        x_batch_t = x_t_test[rand_index]
        d_batch_t = np.ones(shape = [batch_size//2], dtype = np.int32) * 1
        d_batch_t = np.identity(n_domains)[d_batch_t]

        feed_dict = {x_s: x_batch_s, d_s: d_batch_s, x_t: x_batch_t, d_t: d_batch_t, keep_prob: 1.0}
        temp_loss_f = sess.run(loss_f, feed_dict = feed_dict)
        temp_loss_d = sess.run(loss_d, feed_dict = feed_dict)
        temp_acc_d = sess.run(acc_d, feed_dict = feed_dict)

        history_loss_f_test.append(temp_loss_f)
        history_loss_d_test.append(temp_loss_d)
        history_acc_d_test.append(temp_acc_d)

      if is_saving:
        model_path = saver.save(sess, model_path)
        print ('done saving at ', model_path)

      print ('-' * 100)    
      fig = plt.figure(figsize = (10, 3))
      ax1 = fig.add_subplot(1, 2, 1)
      ax1.plot(range(n_iter), history_loss_c_s_train, 'b-', label = 'Training')
      ax1.plot(range(n_iter), history_loss_c_s_test, 'r-', label = 'Test')
      ax1.set_title('Loss_c_s')
      ax1.legend(loc = 'upper right')

      ax2 = fig.add_subplot(1, 2, 2)
      ax2.plot(range(n_iter), history_acc_c_s_train, 'b-', label = 'Training')
      ax2.plot(range(n_iter), history_acc_c_s_test, 'r-', label = 'Test')
      ax2.set_ylim(0.0, 1.0)
      ax2.set_title('Accuracy_c_s')
      ax2.legend(loc = 'lower right')

      fig = plt.figure(figsize = (10, 3))
      ax1 = fig.add_subplot(1, 2, 1)
      ax1.plot(range(n_iter), history_loss_d_train, 'b-', label = 'Training')
      ax1.plot(range(n_iter), history_loss_d_test, 'r-', label = 'Test')
      ax1.set_title('Loss_d')
      ax1.legend(loc = 'upper right')

      ax2 = fig.add_subplot(1, 2, 2)
      ax2.plot(range(n_iter), history_acc_d_train, 'b-', label = 'Training')
      ax2.plot(range(n_iter), history_acc_d_test, 'r-', label = 'Test')
      ax2.set_ylim(0.0, 1.0)
      ax2.set_title('Accuracy_d')
      ax2.legend(loc = 'lower right')

      plt.show()

  def predict(self, x_input, n_in, n_units_f, n_units_c, n_classes, model_path):

    x = tf.placeholder(shape = [None, n_in], dtype = tf.float32)
    keep_prob = tf.placeholder(shape = [], dtype = tf.float32)

    feat = self.f_extractor(x, n_in, n_units_f, keep_prob, reuse = True)
    logits = self.classifier_c(feat, n_units_f, n_units_c, n_classes, keep_prob, reuse = True)
    probs = tf.nn.softmax(logits)
    preds = tf.argmax(probs, axis = 1)

    saver = tf.train.Saver()

    with tf.Session() as sess:

      saver.restore(sess, model_path)

      feed_dict = {x: x_input, keep_prob: 1.0}

      prediction = sess.run(preds, feed_dict = feed_dict)

    return prediction      

Parameters

n_in = 4
n_units_f = 64
n_units_d = 64
n_units_c = 64
n_domains = 2
n_classes = 2
lam = 1.0
learning_rate = 0.01
n_iter = 500
batch_size = 64
show_step = 100
model_path = 'datalab/model'

Output

is_saving = False

da.fit(x_s_train, x_s_test, y_s_train, y_s_test, x_t_train, x_t_test, \
         n_in, n_units_f, n_units_d, n_domains, n_units_c, n_classes, lam, \
         learning_rate, n_iter, batch_size, show_step, is_saving, model_path)

image.png

prediction = da.predict(x_input, n_in, n_units_f, n_units_c, n_classes, model_path)

PassengerId = np.array(test['PassengerId']).astype(int)
solution = pd.DataFrame(prediction, PassengerId, columns = ['Survived'])

solution.to_csv('/content/solution.csv', index_label = ['PassengerId'])

image.png

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0