Help us understand the problem. What is going on with this article?

# 語の種類の静的確率(タイプ確率)を求める

More than 1 year has passed since last update.

DBPediaには、各エンティティのタイプ情報を持つデータがあります。今回は、Wikipediaから各メンションがどのエンティティと紐付いているかを統計的に算出し、その上でDBPediaと結びつけることで、語のタイプ確率を求めます。

# 実行

```git clone https://github.com/sugiyamath/entity_types_scripts
cd entity_types_scripts
wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
bunzip2 *.bz2
mv enwiki-latest-pages-articles.xml dump
python build_types.py
python extract_mention.py
python json2marisa.py
python mprob.py "Obama"
```

# 出力例

```python mprob.py "Obama"
{'Animal': 0.007423904974016332,
'City': 0.05493689680772086,
'MusicalArtist': 0.0007423904974016332,
'President': 0.8916109873793615,
'RailwayLine': 0.0007423904974016332,
'School': 0.0007423904974016332,
'SoccerPlayer': 0.011878247958426132,
'owl#Thing': 0.03192279138827023}

python mprob.py "Einstein"
{'Album': 0.003913894324853229,
'ArtificialSatellite': 0.0136986301369863,
'Congressman': 0.0019569471624266144,
'Film': 0.0019569471624266144,
'InformationAppliance': 0.0019569471624266144,
'Person': 0.009784735812133072,
'RaceHorse': 0.05675146771037182,
'School': 0.005870841487279843,
'Scientist': 0.8473581213307241,
'Software': 0.009784735812133072,
'Song': 0.007827788649706457,
'Station': 0.0136986301369863,
'TelevisionShow': 0.01761252446183953,
'University': 0.005870841487279843,
'owl#Thing': 0.0019569471624266144}

python mprob.py "Kyoto"
'Award': 0.00030721966205837174,
'City': 0.8935483870967742,
'Company': 0.00030721966205837174,
'Country': 0.00015360983102918587,
'Diocese': 0.00015360983102918587,
'GolfTournament': 0.00030721966205837174,
'HistoricBuilding': 0.00030721966205837174,
'Museum': 0.0006144393241167435,
'PublicTransitSystem': 0.0004608294930875576,
'Racecourse': 0.0015360983102918587,
'RailwayLine': 0.0009216589861751152,
'Single': 0.001075268817204301,
'SoccerClub': 0.00030721966205837174,
'Song': 0.001228878648233487,
'Station': 0.0006144393241167435,
'University': 0.004301075268817204,
'WorldHeritageSite': 0.0004608294930875576,
'owl#Thing': 0.003533026113671275}

{'Company': 0.9876835622927522,
'InformationAppliance': 0.00023685457129322596,
'Organisation': 7.895152376440866e-05,
'Software': 0.0007105637138796779,
'Website': 0.010342649613137533,
'owl#Thing': 0.0009474182851729038}

python mprob.py "Python"
{'ComedyGroup': 0.005298318359824925,
'Film': 0.0055286800276434,
'ProgrammingLanguage': 0.9518544114259387,
'Reptile': 0.008062658373646624,
'RollerCoaster': 0.0034554250172771253,
'Software': 0.000691085003455425,
'TelevisionShow': 0.000230361667818475,
'Weapon': 0.00598940336328035,
'owl#Thing': 0.01888965676111495}

python mprob.py "Andy Hunt"
{'SoccerPlayer': 0.8780487804878049, 'Writer': 0.12195121951219512}
```

# コードの中身

## build_types.py

dbpediaのtypesをjsonへ。

```import re
from tqdm import tqdm
import json

out = {}
out2 = {}
with open(filename) as f:
for line in tqdm(f):
if line.startswith("<") and '__' not in line:
line = line.split()
entity = line[0].split("/")[-1][:-1]
if entity not in out:
out[entity] = []
out[entity].append(line[2].split("/")[-1][:-1])
for k,vs in tqdm(out.items()):
out2[k] = list(set(vs))
return out2

def save(out, filename):
with open(filename, "w") as f:
json.dump(out, f, indent=4, sort_keys=True)

if __name__ == "__main__":
```

## extract_mention.py

wikipediaのダンプからアンカーを取り出して、「表現(mention)」と「エンティティ(Wikipediaページ名)」に分けて、「ある表現があるエンティティである回数」の統計をとる。

```# coding: utf-8
import re
from tqdm import tqdm

def extract_mention_and_entity(exp):
tmp = exp[2:-2]
tmp2 = tmp[0].upper() + tmp[1:]
if "|" in tmp2:
entity, mention = tmp2.split("|")
mention = mention.strip()
else:
entity = tmp2[:]
mention = tmp[:]
entity = entity.strip()
entity = entity.replace(" ", "_")
return entity, mention

if __name__ == "__main__":
import json
reg = re.compile(r"\[\[.+?\]\]")
out = {}
with open("dump", errors='ignore') as f:
for line in tqdm(f):
exps = re.findall(reg, line)
for exp in exps:
try:
entity, mention = extract_mention_and_entity(exp)
except:
continue
if mention in out:
if entity in out[mention]:
out[mention][entity] += 1
else:
out[mention][entity] = 1
else:
out[mention] = {}

with open("mention_stat.json", "w") as f:
json.dump(out, f)
```

## json2marisa.py

```import json
import sys
from marisa_trie import BytesTrie

if __name__ == "__main__":
with open("./types.json") as f:

print("types to trie")
trie = BytesTrie([(k,bytes(json.dumps(v), "utf-8")) for k,v in data.items()])

print("saving...")
trie.save("types.marisa")

with open("./mention_stat.json") as f:

print("mention_stat to trie")
trie = BytesTrie([(k,bytes(json.dumps(v), "utf-8")) for k,v in data.items()])

print("saving...")
trie.save("mention_stat.marisa")

print("Done!")
```

## mprob.py

モジュール本体。

```# coding: utf-8
from typing import Tuple, Dict
from marisa_trie import BytesTrie
import json

Probs = Dict[str, float]

def typeprob(mention:str, mstat:BytesTrie, types:BytesTrie) -> Probs:
"""
Calculate type probabilities of the mention.
Returns probabilities as dictionary (keys are type, values are prob).
pre: len(mention) > 0
pre: len(mstat[mention]) > 0
pre: type(json.loads(mstat[mention][0].decode()))) == dict
"""

total = 0
prob = {}
for k,v in stat.items():
try:
except:
continue
for enttype in enttypes:
if enttype not in prob:
prob[enttype] = 0
prob[enttype] += int(v)
total += int(v)
return dict([(k,float(v)/float(total)) for k,v in prob.items()])

if __name__ == "__main__":
import sys
import pprint
mstat = BytesTrie()
types = BytesTrie()
pprint.pprint(typeprob(sys.argv[1], mstat, types))
```

# 注意

このプログラムの実行には8G程度のメモリが必要です。

Why not register and get more from Qiita?
1. We will deliver articles that match you
By following users and tags, you can catch up information on technical fields that you are interested in as a whole
2. you can read useful information later efficiently
By "stocking" the articles you like, you can search right away
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
1. We will deliver articles that match you
By following users and tags, you can catch up information on technical fields that you are interested in as a whole
2. you can read useful information later efficiently
By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした