LoginSignup
0
0

More than 5 years have passed since last update.

CD法メモ

Last updated at Posted at 2018-07-13

Gibbs distribution

\begin{eqnarray}
p(\bf{x}; \bf{\xi}) &=& \frac{e^{-E(\bf{x}; \bf{\xi})}}{Z}  \\
Z &=& \sum_{\bf{x}} e^{-E(\bf{x}; \bf{\xi})}
\end{eqnarray}

likelihood

\begin{eqnarray}
\frac{\partial}{\partial \bf{\xi}} \log \left( p(\bf{x}; \bf{\xi})\right) 
 &=& 
 \frac{\partial}{\partial \bf{\xi}} \log 
  \left( 
   \frac{e^{-E(\bf{x}; \bf{\xi})}}{Z}
  \right) \\
 &=& 
  - \frac{\partial}{\partial \bf{\xi}} 
   E(\bf{x}; \bf{\xi})
  - \frac{\partial}{\partial \bf{\xi}} \log(Z) \\
 &=& 
  - \frac{\partial}{\partial \bf{\xi}} 
   E(\bf{x}; \bf{\xi})
  - \frac{\partial}{\partial \bf{\xi}} 
   \log
    \left(
      \sum_{\bf{x}} e^{-E(\bf{x}; \bf{\xi})} 
    \right) \\
 &=&
  - \frac{\partial}{\partial \bf{\xi}} 
   E(\bf{x}; \bf{\xi})
  - \frac{1}{Z}
      \sum_{\bf{x}} 
     \frac{\partial}{\partial \bf{\xi}} \left(e^{-E(\bf{x}; \bf{\xi})} \right) \\
 &=&
  - \frac{\partial}{\partial \bf{\xi}} 
   E(\bf{x}; \bf{\xi})
  - \sum_{\bf{x}} 
   \frac{e^{-E(\bf{x}; \bf{\xi})}}{Z}
     \frac{\partial}{\partial \bf{\xi}} \left( -E(\bf{x}; \bf{\xi}) \right) \\
 &=&
  - \frac{\partial}{\partial \bf{\xi}} 
   E(\bf{x}; \bf{\xi})
  +  \left \langle
      \frac{\partial}{\partial \bf{\xi}} E(\bf{x}; \bf{\xi}) 
     \right \rangle_{\bf{x}} \\
\end{eqnarray}

Contrastive Divergence method

  • replace the second term sampling summations
  • it is known that a few sampling trial works well empirically.
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0