# ゼロから作る Deep Learning 1-3章

More than 1 year has passed since last update.

# 1. Python入門

## 1.2. インストール

### pyenv

brew info pyenv
brew install pyenv


### anaconda

pyenv install --list
pyenv install anaconda3-4.3.1
pyenv global anaconda3-4.3.1


## 1.5. NumPy

pip install numpy


## 1.6. MatPlotLib

pip install matplotlib


01.py

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.image import imread

x = np.arange(0, 6, 0.1)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1, label="sin")
plt.plot(x, y2, label="cos", linestyle="--")
plt.xlabel("x")
plt.ylabel("y")
plt.show()

plt.imshow(img)
plt.show()


# 2. パーセプトロン

## 2.3. パーセプトロンの実装

### 2.3.1 簡単な実装

my_and.py

def my_and(x1, x2):
w1, w2, theta = 0.5, 0.5, 0.8
tmp = x1 * w1 + x2 * w2
if tmp <= theta:
return 0
else:
return 1

print('and')
print(my_and(0, 0))
print(my_and(1, 0))
print(my_and(0, 1))
print(my_and(1, 1))


### 2.3.3 重みとバイアスの実装

and.py

def and_perceptron(x1, x2):
x = np.array([x1, x2])
w = np.array([0.5, 0.5])
b = -0.7
value = np.sum(w * x) + b
if value > 0:
return 1
else:
return 0

print('and perceptron')
print(and_perceptron(0, 0))
print(and_perceptron(1, 0))
print(and_perceptron(0, 1))
print(and_perceptron(1, 1))


nand.py

def nand_perceptron(x1, x2):
x = np.array([x1, x2])
w = np.array([-0.5, -0.5])
b = 0.7
value = np.sum(w * x) + b
if value > 0:
return 1
else:
return 0

print('nand perceptron')
print(nand_perceptron(0, 0))
print(nand_perceptron(1, 0))
print(nand_perceptron(0, 1))
print(nand_perceptron(1, 1))


or.py

def or_perceptron(x1, x2):
x = np.array([x1, x2])
w = np.array([1, 1])
b = -0.7
value = np.sum(w * x) + b
if value > 0:
return 1
else:
return 0

print('or perceptron')
print(or_perceptron(0, 0))
print(or_perceptron(1, 0))
print(or_perceptron(0, 1))
print(or_perceptron(1, 1))


## 2.5.2 XORゲートの実装

xor.py

def xor_perceptron(x1, x2):
x3 = nand_perceptron(x1, x2)
x4 = or_perceptron(x1, x2)
return and_perceptron(x3, x4)

print('xor perceptron')
print(xor_perceptron(0, 0))
print(xor_perceptron(1, 0))
print(xor_perceptron(0, 1))
print(xor_perceptron(1, 1))


# 2.6 NANDからコンピューターへ

nand_only_xor.py

def nand_only_xor_perceptron(x1, x2):
x3 = nand_perceptron(x1, x2)
x4 = nand_perceptron(x1, x3)
x5 = nand_perceptron(x2, x3)
return nand_perceptron(x4, x5)

print('nand only xor perceptron')
print(nand_only_xor_perceptron(0, 0))
print(nand_only_xor_perceptron(1, 0))
print(nand_only_xor_perceptron(0, 1))
print(nand_only_xor_perceptron(1, 1))


# 3. ニューラルネットワーク

## 3.1. パーセプトロンからニューラルネットワークへ

### 3.1.2 パーセプトロンの復習

y = h(b + w_1 x_1 + w_2 x_2)


h(x) = \left\{
\begin{array}{ll}
0 & (x \leq 0) \\
1 & (x > 0)
\end{array}
\right.


### 3.1.3 活性化関数の登場

a = b + w_1 x_1 + w_2 x_2


y = h(a)


## 3.2.1 シグモイド関数

h(x) = \frac{1}{1 + \exp(-x)}


(-\infty, \infty) \rightarrow (0,1)


## 3.2.2 ステップ関数の実装

step_func.py

def step_func(x):
if x > 0:
return 1
else:
return 0

print('step_function')
print(step_func(-1))
print(step_func(0))
print(step_func(1))
print(step_func(2))


step_function.py

def step_function(x):
y = x > 0
return y.astype(np.int)

print('step_function')
print(step_function(np.array([-1, 0, 1, 2])))


### 3.2.3 ステップ関数のグラフ

step_funtion.py

def step_function(x):
return np.array(x > 0, dtype = np.int)

x = np.arange(-5.0, 5.0, 0.1)
y = step_function(x)
plt.plot(x, y)
plt.ylim(-0.1, 1.1)
plt.show()


### 3.2.4 シグモイド関数の実装

sigmoid.py

def sigmoid(x):
return 1 / (1 + np.exp(-x))

print('sigmoid')
print(sigmoid(np.array([-1, 0, 1, 2])))

x = np.arange(-5.0, 5.0, 0.1)
y = sigmoid(x)
plt.plot(x, y)
plt.ylim(-0.1, 1.1)
plt.show()


### 3.2.5 シグモイド関数とステップ関数の比較

diff.py

x = np.arange(-5.0, 5.0, 0.1)
y = sigmoid(x)
z = step_function(x)
plt.plot(x, y)
plt.plot(x, z)
plt.ylim(-0.1, 1.1)
plt.show()


### 3.2.7 ReLU関数

h(x) = \left\{
\begin{array}{ll}
x & (x > 0) \\
0 & (x \leq 0)
\end{array}
\right.


relu.py

def relu(x):
return np.maximum(0, x)

print('relu')
print(relu(np.array([-1, 0, 1, 2])))

x = np.arange(-5.0, 5.0, 0.1)
y = relu(x)
plt.plot(x, y)
plt.ylim(-0.1, 5.1)
plt.show()


## 3.4 3層ニューラルネットワーク

### 3.4.3 実装のまとめ

init_network.py

def init_network():
return {'W1': np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]]),
'b1': np.array([0.1, 0.2, 0.3]),
'W2': np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]]),
'b2': np.array([0.1, 0.2]),
'W3': np.array([[0.1, 0.3], [0.2, 0.4]]),
'b3': np.array([0.1, 0.2])}


identity_function.py

def identity_function(x):
return x


forward.py

def forward(network, x):
W1, W2, W3 = network['W1'], network['W2'], network['W3']
b1, b2, b3 = network['b1'], network['b2'], network['b3']
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1, W2) + b2
z2 = sigmoid(a2)
a3 = np.dot(z2, W3) + b3
return identity_function(a3)


test.py

network = init_network()
x = np.array([1.0, 0.5])
y = forward(network, x)
print(y)
x = np.array([0.0, 0.1])
y = forward(network, x)
print(y)


## 3.5 出力層の設計

### 3.5.1 恒等関数とソフトマックス関数

y_k = \frac{\exp(a_k)}{\exp(a_1) + \cdots + \exp(a_n)} = \frac{\exp(a_k)}{\sum_{i = 1}^{n} \exp(a_i)}


(i) \quad 0 < y_k < 1\\
(ii) \quad y_1 + \cdots + y_n = 1


softmax.py

def softmax(a):
exp_a = np.exp(a)
sum_exp_a = np.sum(exp_a)
return exp_a / sum_exp_a

a = np.array([0.3, 2.0, 4.0])
print(softmax(a))


### 3.5.2 ソフトマックス実装上の注意

y_k = \frac{\exp(a_k)}{\sum_{i = 1}^{n} \exp(a_i)} = \frac{C \exp(a_k)}{C \sum_{i = 1}^{n} \exp(a_i)}\\
= \frac{\exp(\log C) \exp(a_k)}{\exp(\log C) \sum_{i = 1}^{n} \exp(a_i)}\\
= \frac{\exp(a_k + \log C)}{\sum_{i = 1}^{n} \exp(a_i + \log C)}


softmax.py

def softmax(a):
c = np.max(a)
exp_a = np.exp(a - c)
sum_exp_a = np.sum(exp_a)
return exp_a / sum_exp_a

a = np.array([100, 1000, 10000])
print(softmax(a))


## 3.6 手書き数字認識

### 3.6.1 MNISTデータセット

git clone https://github.com/oreilly-japan/deep-learning-from-scratch.git
cd deep-learning-from-scratch/ch03
python mnist_show.py


hoge

img_show(x_train[1].reshape(28, 28))


### 3.6.2 ニューラルネットワークの推論処理

python neuralnet_mnist.py


hoge

print(network['W1'])
img_show((x[1] * 255).reshape(28, 28))
predict(network, x[1])
print(t[1])


### 3.6.3 バッチ処理

python neuralnet_mnist_batch.py


https://github.com/oreilly-japan/deep-learning-from-scratch