Qiita Teams that are logged in
You are not logged in to any team

Log in to Qiita Team
Community
OrganizationAdvent CalendarQiitadon (β)
Service
Qiita JobsQiita ZineQiita Blog
0
Help us understand the problem. What is going on with this article?
@ViyaDev

線形モデルの情報で表示されるテーブルについて

More than 1 year has passed since last update.

SAS Viyaを使って線形モデルを作成した際に幾つかのテーブルが表示されます。今回はこの各テーブルの意味について解説します。

NObs

Number of observationsの略です。観測数のことで、読み取り(read)と使用(used)の二つがあります。値がないデータは除外されます。

Number of Observations
RowId Description Value
0 NREAD Number of Observations Read 421.0
1 NUSED Number of Observations Used 421.0

Dimension

モデルの次元数です。パラメータ、作用数を含めます。

Dimensions
RowId Description Value
0 NEFFECTS Number of Effects 2
1 NPARMS Number of Parameters 2

ANOVA

Analysis of Varianceの略です(分散分析)。カテゴリー要因の影響を分析するのに用います。

Analysis of Variance
RowId Source DF SS MS FValue ProbF
0 MODEL Model 1.0 3.721720e+10 3.721720e+10 217.329426 6.373036e-40
1 ERROR Error 419.0 7.175285e+10 1.712479e+08 NaN NaN
2 TOTAL Corrected Total 420.0 1.089701e+11 NaN NaN NaN

FitStatistics

決定係数と平均二乗誤差などのモデルの近似統計量です。

Fit Statistics
RowId Description Value
0 RMSE Root MSE 1.308617e+04
1 RSQUARE R-Square 3.415360e-01
2 ADJRSQ Adj R-Sq 3.399645e-01
3 AIC AIC 8.406575e+03
4 AICC AICC 8.406633e+03
5 SBC SBC 7.991661e+03
6 TRAIN_ASE ASE 1.704343e+08

ParameterEstimates

回帰係数です。

Parameter Estimates
Effect Parameter DF Estimate StdErr tValue Probt
0 Intercept Intercept 1 75304.372444 3017.469237 24.956136 6.743006e-85
1 MPG_City MPG_City 1 -2188.496867 148.452209 -14.742097 6.373036e-40

Timing

GLMアクションを呼び出すサブタスクのタイミングです。

Task Timing
RowId Task Time RelTime
0 SETUP Setup and Parsing 0.005779 0.430311
1 LEVELIZATION Levelization 0.000964 0.071775
2 INITIALIZATION Model Initialization 0.000294 0.021872
3 SSCP SSCP Computation 0.000518 0.038577
4 FITTING Model Fitting 0.001280 0.095315
5 OUTPUT Creating Output Data 0.002085 0.155249
6 CLEANUP Cleanup 0.002459 0.183085
7 TOTAL Total 0.013430 1.000000
0
Help us understand the problem. What is going on with this article?
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away

Comments

No comments
Sign up for free and join this conversation.
Sign Up
If you already have a Qiita account Login
0
Help us understand the problem. What is going on with this article?