0
0

More than 1 year has passed since last update.

pノルムがノルムであることの証明(p=1,2,∞のとき)

Posted at

ノルムの定義

$V$は線形空間とする。実数値関数
$$||\cdot|| : V \to \{r | r\leq0\}$$
が次を満たすとき,$||\cdot||$はノルムであるという。

\begin{align*}
&①\ \ ||\alpha x|| = |\alpha|\cdot||x||\\
&②\ \ ||x+y|| \leq ||x||+||y|| \\
&③\ \ ||x||=0 \iff x=0 \ \ (Vの零元)
\end{align*}

pノルムの定義

数ベクトル空間$K^n := \{x | x=(x_1,\cdots,x_n)^\top, x_j \in K (1\leq j \leq n)\}$に対して,
次のような標準的なノルム($p$ノルム)を定義する。

||x||_p := 
\left\{\begin{array}{ll}
\displaystyle \max_{1\leq i \leq n} |x_i| & (p=\infty)\\
\displaystyle \left(\sum_{i=1}^{n}|x_i|^p\right)^{\frac{1}{p}} & (p\geq 1)
\end{array}\right.

pノルムがノルムであることの証明(K=ℝ,p=1,2,∞のときのみ)

p=1のとき

証明

||x||_1 := \sum_{i=1}^{n}|x_i| \ \ (\ = |x_1| + \cdots + |x_n|\ )

\begin{align*}
||\alpha x||_1 &= \sum_{i=1}^{n}|\alpha x_i|\ \ (\ = |\alpha x_1| + \cdots + |\alpha x_n|\ )\\
&= |\alpha|\sum_{i=1}^{n}|x_i|\ \ (\ = |\alpha|\cdot(|x_1| + \cdots + |x_n|)\ )\\
&= |\alpha|\cdot||x||_1\\
\end{align*}


三角不等式($|x+y|\leq|x|+|y|$)より,

\begin{align*}
||x+y||_1 &= \sum_{i=1}^{n}|x_i + y_i|\ \ (\ = |x_1+y_1| + \cdots + |x_n+y_n|\ )\\
&\leq \sum_{i=1}^{n}(|x_i| + |y_i|)\ \ (\ = |x_1|+|y_1| + \cdots + |x_n|+|y_n|\ )\\
&= \sum_{i=1}^{n}|x_i| + \sum_{i=1}^{n}|y_i|\\
&= ||x||_1+||y||_1 \\
\end{align*}

\begin{align*}
||x||_1 = 0 &\iff \sum_{i=1}^{n}|x_i|=0\\
&\iff x_1 = \cdots = x_n = 0\\
&\iff x=0
\end{align*}

以上①~③から,$||\cdot||_1$はノルム。

p=2のとき

証明

||x||_2 := \left(\sum_{i=1}^{n}|x_i|^2\right)^\frac{1}{2} \ \ \left(\ = \sqrt{|x_1|^2 + \cdots + |x_n|^2}\ \right)

\begin{align*}
||\alpha x||_2 &= \left(\sum_{i=1}^{n}|\alpha x_i|^2\right)^\frac{1}{2} \ \ \left(\ = \sqrt{|\alpha x_1|^2 + \cdots + |\alpha x_n|^2}\ \right)\\
&= |\alpha|\left(\sum_{i=1}^{n}|x_i|^2\right)^\frac{1}{2} \ \ \left(\ = |\alpha|\sqrt{|x_1|^2 + \cdots + |x_n|^2}\ \right)\\
&= |\alpha|\cdot||x||_2\\
\end{align*}

\begin{align*}
||x+y||_2^2 - \left(||x||_2+||y||_2\right)^2 
&= \sum_{i=1}^{n}|x_i+y_i|^2 - \left(\sqrt{\sum_{i=1}^{n}|x_i|^2} + \sqrt{\sum_{i=1}^{n}|y_i|^2}\right)^2\\
&= \sum_{i=1}^{n}|x_i|^2 + \sum_{i=1}^{n}|y_i|^2 + \sum_{i=1}^{n}2|x_iy_i| - \left(\sum_{i=1}^{n}|x_i|^2 + \sum_{i=1}^{n}|y_i|^2 + 2\sqrt{\sum_{i=1}^{n}|x_i|^2 \sum_{i=1}^{n}|y_i|^2}\right)\\
&= 2\left(\sum_{i=1}^{n}|x_iy_i| - \sqrt{\sum_{i=1}^{n}|x_i|^2 \sum_{i=1}^{n}|y_i|^2}\right)\\
&\leq 0\ \ (\because \text{Caucy-Schwarz}の不等式)
\end{align*}

\begin{align*}
||x||_2 = 0 &\iff \left(\sum_{i=1}^{n}|x_i|^2\right)^\frac{1}{2}=0\\
&\iff |x_1|^2=\cdots=|x_n|^2=0\\
&\iff x_1=\cdots=x_n=0\\
&\iff x=0
\end{align*}

以上①~③から,$||\cdot||_2$はノルム。

p=∞のとき

証明

||x||_{\infty} := \max_{1\leq i \leq n} |x_i|

\begin{align*}
||\alpha x||_{\infty} 
&= \max_{1\leq i \leq n} |\alpha x_i|\\
&= |\alpha|\max_{1\leq i \leq n} |x_i|\\
&= |\alpha|\cdot||x||_{\infty}\\
\end{align*}


三角不等式より,

\begin{align*}
||x+y||_{\infty} 
&= \max_{1\leq i \leq n} |x_i + y_i|\\
&\leq \max_{1\leq i \leq n} (|x_i| + |y_i|)\\
&\leq \max_{1\leq i \leq n} |x_i| + \max_{1\leq i \leq n} |y_i|\\
&= ||x||_{\infty}+||y||_{\infty} \\
\end{align*}

\begin{align*}
||x||_{\infty} = 0 
&\iff \max_{1\leq i \leq n} |x_i|=0\\
&\iff \forall i\ \ |x_i|=0\\
&\iff x=0
\end{align*}

以上①~③から,$||\cdot||_\infty$はノルム。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0