12
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

pythonで作るサンプルデータ

Last updated at Posted at 2016-11-20

サンプルデータ

線形データ

n=20
a = np.arange(n).reshape(4, -1); a  # 5列の行列
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19, 20, 21, 22, 23, 24],
       [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
        42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
        67, 68, 69, 70, 71, 72, 73, 74],
       [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
        92, 93, 94, 95, 96, 97, 98, 99]])
df = pd.DataFrame(a, columns=list('abcde')); df
a b c d e
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19

ランダムデータ

r = np.random.randn(4, 5); r
array([[-0.37840346, -0.84591793,  0.50590263,  0.0544243 ,  0.59361247],
       [-0.2726931 , -1.74415635,  0.0199559 , -0.20695113, -1.19559455],
       [-0.59799566, -0.26810224, -0.18738038,  1.05843686,  0.72317579],
       [ 1.23389386,  1.91293041, -1.33322818,  0.78255026,  2.04737357]])
df = pd.DataFrame(r, columns=list('abcde')); df
a b c d e
0 -0.378403 -0.845918 0.505903 0.054424 0.593612
1 -0.272693 -1.744156 0.019956 -0.206951 -1.195595
2 -0.597996 -0.268102 -0.187380 1.058437 0.723176
3 1.233894 1.912930 -1.333228 0.782550 2.047374
df.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x17699af2a58>

output_8_1.png

df = pd.DataFrame(np.random.randn(n,n))
plt.contourf(df, cmap='jet')
<matplotlib.contour.QuadContourSet at 0x1769a1a12b0>

output_10_1.png

等高線表示

plt.pcolor(df, cmap='jet')
<matplotlib.collections.PolyCollection at 0x1769b1e2208>

output_12_1.png

カラーマップ表示

sin波

n=100
x = np.linspace(0, 2*np.pi, n)
s = pd.Series(np.sin(x), index=x)
s.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x1769e695780>

output_16_1.png

sin波

snoise = s + 0.1 * np.random.randn(n)
sdf = pd.DataFrame({'sin wave':s, 'noise wave': snoise})
sdf.plot(color=('r', 'b'))
<matplotlib.axes._subplots.AxesSubplot at 0x1769e8586d8>

output_18_1.png

ノイズをのせた

正規分布

from  scipy import stats as ss
median = x[int(n/2)]  # xの中央値
g = pd.Series(ss.norm.pdf(x, loc=median), x)
g.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x1769ffba128>

output_22_1.png

gnoise = g + 0.01 * np.random.randn(n)
df = pd.DataFrame({'gauss wave':g, 'noise wave': gnoise})
df.plot(color=('r', 'b'))
<matplotlib.axes._subplots.AxesSubplot at 0x1769e970828>

output_23_1.png

log関数

median = x[int(n/2)]  # xの中央値
x1 = x + 10e-3
l = pd.Series(np.log(x1), x1)
l.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x1769ffba5f8>

output_25_1.png

lnoise = l + 0.1 * np.random.randn(n)
df = pd.DataFrame({'log wave':l, 'noise wave': lnoise})
df.plot(color=('r', 'b'))
<matplotlib.axes._subplots.AxesSubplot at 0x176a00ec358>

output_26_1.png

ランダムウォーク

n = 1000
se = pd.Series(np.random.randint(-1, 2, n)).cumsum()
se.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x284f3c62c18>

README_28_1.png

np.random.randint(-1, 2, n)で(-1, 0, 1)のどれかをランダムにn個生成し、cumsum()で積み上げ合計していくことでランダムウォークを描く。

sma100 = se.rolling(100).mean()
ema100 = se.ewm(span=100).mean()

df = pd.DataFrame({'Chart': se,  'SMA100': sma100, 'EMA100': ema100})
df.plot(style = ['--','-','-'])
<matplotlib.axes._subplots.AxesSubplot at 0x284f3cadcc0>

README_30_1.png

単純移動平均線(Simple Moving Average)と指数移動平均線(Exponential Moving Average)を同時に描画した。
EMAの方がSMAと比べて一般的に直近の動きを反映しやすく、トレンドに追随しやすいといわれている。

記事の内容とは関係ないけど、今さらながらjupyter notebookで書いてmd形式で落とすと、qiitaにはっつけるだけでいいからすごい楽。

12
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
12
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?