6
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

[Swift] Parsing CSV with NTYCSVTable

Last updated at Posted at 2014-06-14

Prepare cocoapods.

shell
$ gem install cocoapods
$ pod setup
$ vim Podfile
Podfile
platform :ios, "8.0"
pod 'NTYCSVTable'
shell
$ pod install
$ open YourProject.xcworkspace

Prepare "Bridging-Header.h"

By using "Bridging-Header", you can use "Objective-C" library from Swift in a few steps.

Create dummy "Objective-C" class file in project.

Screen Shot 2014-06-14 at 6.49.03 PM.png

Screen Shot 2014-06-14 at 6.48.43 PM.png

And then, *-Bridging-Header.h will be created.

Screen Shot 2014-06-14 at 7.02.37 PM.png

Insert "NTYCSVTable" import header in this file.

YouyProject-Bridging-Header.h
#import "NTYCSVTable.h"
#import "NSString+NTYNonStringHandling.h"

After you get YouyProject-Bridging-Header.h, you can delete Dummy Objective-C file(.m) and header(.h).

Prepare sample CSV file

Now, I prepared Japanese prefecture sample csv here:

prefectures.csv
id,name
01,北海道
02,青森県
03,岩手県
04,宮城県
05,秋田県
06,山形県
07,福島県
08,茨城県
09,栃木県
10,群馬県
11,埼玉県
12,千葉県
13,東京都
14,神奈川県
15,新潟県
16,富山県
17,石川県
18,福井県
19,山梨県
20,長野県
21,岐阜県
22,静岡県
23,愛知県
24,三重県
25,滋賀県
26,京都府
27,大阪府
28,兵庫県
29,奈良県
30,和歌山県
31,鳥取県
32,島根県
33,岡山県
34,広島県
35,山口県
36,徳島県
37,香川県
38,愛媛県
39,高知県
40,福岡県
41,佐賀県
42,長崎県
43,熊本県
44,大分県
45,宮崎県
46,鹿児島県
47,沖縄県

and import this csv into Suppoting Files Directory.

Screen Shot 2014-06-14 at 6.56.21 PM.png

Parse CSV!

Code like this:

ViewController.swift
    override func viewDidLoad() {
        super.viewDidLoad()

        testNTYCSVTable()
    }

    func testNTYCSVTable() {
        let csvPath = NSBundle.mainBundle().pathForResource("prefectures", ofType: "csv")
        let csvURL = NSURL.fileURLWithPath(csvPath)
        let table = NTYCSVTable(contentsOfURL: csvURL)
        
        var rows = table.rows
        println(rows)
        
        var headers = table.headers
        println(headers)
        
        var row_0 = table.rows[0] as Dictionary<String, AnyObject>
        println(row_0)
        
        var row_1 = table.rows[1] as Dictionary<String, AnyObject>
        println(row_1)
        
        var columns = table.columns
        println(columns)
        
        var names = table.columns["id"] as Array<Int>
        println(names)
        
        var ages = table.columns["name"] as Array<String>
        println(ages)   
    }

and then, you will get output in log.

log
[{
    id = 1;
    name = "\U5317\U6d77\U9053";
}, {
    id = 2;
    name = "\U9752\U68ee\U770c";
}, {
    id = 3;
    name = "\U5ca9\U624b\U770c";
}, {
    id = 4;
    name = "\U5bae\U57ce\U770c";
}, {
    id = 5;
    name = "\U79cb\U7530\U770c";
}, {
    id = 6;
    name = "\U5c71\U5f62\U770c";
}, {
    id = 7;
    name = "\U798f\U5cf6\U770c";
}, {
    id = 8;
    name = "\U8328\U57ce\U770c";
}, {
    id = 9;
    name = "\U6803\U6728\U770c";
}, {
    id = 10;
    name = "\U7fa4\U99ac\U770c";
}, {
    id = 11;
    name = "\U57fc\U7389\U770c";
}, {
    id = 12;
    name = "\U5343\U8449\U770c";
}, {
    id = 13;
    name = "\U6771\U4eac\U90fd";
}, {
    id = 14;
    name = "\U795e\U5948\U5ddd\U770c";
}, {
    id = 15;
    name = "\U65b0\U6f5f\U770c";
}, {
    id = 16;
    name = "\U5bcc\U5c71\U770c";
}, {
    id = 17;
    name = "\U77f3\U5ddd\U770c";
}, {
    id = 18;
    name = "\U798f\U4e95\U770c";
}, {
    id = 19;
    name = "\U5c71\U68a8\U770c";
}, {
    id = 20;
    name = "\U9577\U91ce\U770c";
}, {
    id = 21;
    name = "\U5c90\U961c\U770c";
}, {
    id = 22;
    name = "\U9759\U5ca1\U770c";
}, {
    id = 23;
    name = "\U611b\U77e5\U770c";
}, {
    id = 24;
    name = "\U4e09\U91cd\U770c";
}, {
    id = 25;
    name = "\U6ecb\U8cc0\U770c";
}, {
    id = 26;
    name = "\U4eac\U90fd\U5e9c";
}, {
    id = 27;
    name = "\U5927\U962a\U5e9c";
}, {
    id = 28;
    name = "\U5175\U5eab\U770c";
}, {
    id = 29;
    name = "\U5948\U826f\U770c";
}, {
    id = 30;
    name = "\U548c\U6b4c\U5c71\U770c";
}, {
    id = 31;
    name = "\U9ce5\U53d6\U770c";
}, {
    id = 32;
    name = "\U5cf6\U6839\U770c";
}, {
    id = 33;
    name = "\U5ca1\U5c71\U770c";
}, {
    id = 34;
    name = "\U5e83\U5cf6\U770c";
}, {
    id = 35;
    name = "\U5c71\U53e3\U770c";
}, {
    id = 36;
    name = "\U5fb3\U5cf6\U770c";
}, {
    id = 37;
    name = "\U9999\U5ddd\U770c";
}, {
    id = 38;
    name = "\U611b\U5a9b\U770c";
}, {
    id = 39;
    name = "\U9ad8\U77e5\U770c";
}, {
    id = 40;
    name = "\U798f\U5ca1\U770c";
}, {
    id = 41;
    name = "\U4f50\U8cc0\U770c";
}, {
    id = 42;
    name = "\U9577\U5d0e\U770c";
}, {
    id = 43;
    name = "\U718a\U672c\U770c";
}, {
    id = 44;
    name = "\U5927\U5206\U770c";
}, {
    id = 45;
    name = "\U5bae\U5d0e\U770c";
}, {
    id = 46;
    name = "\U9e7f\U5150\U5cf6\U770c";
}, {
    id = 47;
    name = "\U6c96\U7e04\U770c";
}]
[id, name]
[id: 1, name: 北海道]
[id: 2, name: 青森県]
{
    id =     (
        1,
        2,
        3,
        4,
        5,
        6,
        7,
        8,
        9,
        10,
        11,
        12,
        13,
        14,
        15,
        16,
        17,
        18,
        19,
        20,
        21,
        22,
        23,
        24,
        25,
        26,
        27,
        28,
        29,
        30,
        31,
        32,
        33,
        34,
        35,
        36,
        37,
        38,
        39,
        40,
        41,
        42,
        43,
        44,
        45,
        46,
        47
    );
    name =     (
        "\U5317\U6d77\U9053",
        "\U9752\U68ee\U770c",
        "\U5ca9\U624b\U770c",
        "\U5bae\U57ce\U770c",
        "\U79cb\U7530\U770c",
        "\U5c71\U5f62\U770c",
        "\U798f\U5cf6\U770c",
        "\U8328\U57ce\U770c",
        "\U6803\U6728\U770c",
        "\U7fa4\U99ac\U770c",
        "\U57fc\U7389\U770c",
        "\U5343\U8449\U770c",
        "\U6771\U4eac\U90fd",
        "\U795e\U5948\U5ddd\U770c",
        "\U65b0\U6f5f\U770c",
        "\U5bcc\U5c71\U770c",
        "\U77f3\U5ddd\U770c",
        "\U798f\U4e95\U770c",
        "\U5c71\U68a8\U770c",
        "\U9577\U91ce\U770c",
        "\U5c90\U961c\U770c",
        "\U9759\U5ca1\U770c",
        "\U611b\U77e5\U770c",
        "\U4e09\U91cd\U770c",
        "\U6ecb\U8cc0\U770c",
        "\U4eac\U90fd\U5e9c",
        "\U5927\U962a\U5e9c",
        "\U5175\U5eab\U770c",
        "\U5948\U826f\U770c",
        "\U548c\U6b4c\U5c71\U770c",
        "\U9ce5\U53d6\U770c",
        "\U5cf6\U6839\U770c",
        "\U5ca1\U5c71\U770c",
        "\U5e83\U5cf6\U770c",
        "\U5c71\U53e3\U770c",
        "\U5fb3\U5cf6\U770c",
        "\U9999\U5ddd\U770c",
        "\U611b\U5a9b\U770c",
        "\U9ad8\U77e5\U770c",
        "\U798f\U5ca1\U770c",
        "\U4f50\U8cc0\U770c",
        "\U9577\U5d0e\U770c",
        "\U718a\U672c\U770c",
        "\U5927\U5206\U770c",
        "\U5bae\U5d0e\U770c",
        "\U9e7f\U5150\U5cf6\U770c",
        "\U6c96\U7e04\U770c"
    );
}
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
[北海道, 青森県, 岩手県, 宮城県, 秋田県, 山形県, 福島県, 茨城県, 栃木県, 群馬県, 埼玉県, 千葉県, 東京都, 神奈川県, 新潟県, 富山県, 石川県, 福井県, 山梨県, 長野県, 岐阜県, 静岡県, 愛知県, 三重県, 滋賀県, 京都府, 大阪府, 兵庫県, 奈良県, 和歌山県, 鳥取県, 島根県, 岡山県, 広島県, 山口県, 徳島県, 香川県, 愛媛県, 高知県, 福岡県, 佐賀県, 長崎県, 熊本県, 大分県, 宮崎県, 鹿児島県, 沖縄県]
6
6
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?