20
24

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

話題のキュウリを仕分けしてみた

Last updated at Posted at 2016-08-09

この記事を見て、キュウリの仕分けに挑戦してみた

噂の「TensorFlowでキュウリの仕分けを行うマシン」がMFT2016に展示されていたので実物を見てきた

GitHub

CUCUMBER-9

使用したデータはprototype_1のほう
展開したデータを'./cucumber-batches-py'に置く

とりあえず適当なモデルを組んで試してみたら70%台くらいの精度しか出なかったけど、モデルを複雑にしてもあまり変わらなかったのでデータを水増ししてみた
撮影条件は揃っているようだし、大きさや艶も仕分けに関係あるらしいので、やったのは移動・回転・反転のみ
使用しているのはKeras、AWSのg2.2xlargeインスタンスで実行

コード

cucumber.py
#coding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Flatten, Dropout
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.advanced_activations import ELU
from keras.callbacks import Callback, EarlyStopping
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator

try:
    import cPickle as pickle
except:
    import pickle
import numpy as np
import sys, os, time

class Evaluate(Callback):
    epoch = 0
    def on_epoch_end(self, logs={}, acc=None):
        self.epoch += 1
        if self.epoch % 10 == 0:
            score = self.model.evaluate(X_test, y_test, batch_size=495)
            print('test - loss: {loss:.4f} - acc: {accuracy:.4f}'.format(loss=score[0], accuracy=score[1]))

def unpickle(file_name):
    with open(file_name, 'rb') as f:
        if sys.version_info.major == 2:
            return pickle.load(f)
        elif sys.version_info.major == 3:
            return pickle.load(f, encoding='latin-1')

def load_data():
    path = './cucumber-batches-py'

    nb_train_samples = 2475

    X_train = np.zeros((nb_train_samples, 3, 32, 32), dtype='uint8')
    y_train = np.zeros((nb_train_samples,), dtype='uint8')

    for i in range(1, 6):
        fpath = os.path.join(path, 'data_batch_' + str(i))
        batch_dict = unpickle(fpath)
        data = batch_dict['data']
        labels = batch_dict['labels']

        X_train[(i-1)*495:i*495, :, :, :] = data.reshape(495, 3, 32, 32)
        y_train[(i-1)*495:i*495] = labels

    fpath = os.path.join(path, 'test_batch')
    batch_dict = unpickle(fpath)
    data = batch_dict['data']
    labels = batch_dict['labels']

    X_test = data.reshape(495, 3, 32, 32)
    y_test = labels

    return (X_train, y_train), (X_test, y_test)

nb_classes = 9

(X_train, y_train), (X_test, y_test) = load_data()

X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
y_train = np_utils.to_categorical(y_train, nb_classes)
y_test = np_utils.to_categorical(y_test, nb_classes)

print('Data loaded')

data_gen = ImageDataGenerator(horizontal_flip=True, width_shift_range=4.0/32, height_shift_range=4.0/32, rotation_range=10, fill_mode='nearest', cval=1.0)
data_gen.fit(X_train)
val_gen = ImageDataGenerator()
val_gen.fit(X_train)

model = Sequential()

for pool in range(4):
    for conv in range(4):
        if pool == 0 and conv == 0:
            model.add(Convolution2D(nb_filter=8 * 2**pool, nb_row=3, nb_col=3, border_mode='same', input_shape=(3, 32, 32)))
        else:
            model.add(Convolution2D(nb_filter=8 * 2**pool, nb_row=3, nb_col=3, border_mode='same'))
        model.add(ELU())
        model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), border_mode='same'))

model.add(Flatten())

n = 3
drop = 1.0 - np.power(0.5, 1.0 / n)
for dense in range(1, 4):
    model.add(Dense(4096))
    model.add(ELU())
    model.add(Dropout(drop))
    model.add(BatchNormalization())

model.add(Dense(nb_classes))
model.add(Activation('softmax'))

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
evaluate = Evaluate()
stop = EarlyStopping(monitor='val_loss', patience=30)
begin = time.clock()
model.fit_generator(data_gen.flow(X_train, y_train, batch_size=128, shuffle=True), samples_per_epoch=12800, nb_epoch=1000, verbose=2, callbacks=[evaluate, stop], validation_data=val_gen.flow(X_train, y_train, batch_size=495*2, shuffle=True), nb_val_samples=495*2)
print('Time elapsed: %.0f' % (time.clock() - begin))
score = model.evaluate(X_test, y_test, batch_size=495)
print('test - loss: {loss:.4f} - acc: {accuracy:.4f}'.format(loss=score[0], accuracy=score[1]))

結果

Train Accuracy : 0.96
Test Accuracy : 0.89
Time Elapsed : 19480s(71s/epoch)

実際に32X32の画像で人間がどれくらいの精度出せるのかベンチマークがないと、評価が難しい
データに偏りや不足があるかもしれないし、画像が小さすぎて必要な情報が欠落しているかもしれない

20
24
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
20
24

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?