Why not login to Qiita and try out its useful features?

We'll deliver articles that match you.

You can read useful information later.

5
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

素人の言語処理100本ノック:38

Last updated at Posted at 2016-11-17

言語処理100本ノック 2015の挑戦記録です。環境はUbuntu 16.04 LTS + Python 3.5.2 :: Anaconda 4.1.1 (64-bit)です。過去のノックの一覧はこちらからどうぞ。

第4章: 形態素解析

夏目漱石の小説『吾輩は猫である』の文章(neko.txt)をMeCabを使って形態素解析し,その結果をneko.txt.mecabというファイルに保存せよ.このファイルを用いて,以下の問に対応するプログラムを実装せよ.

なお,問題37, 38, 39はmatplotlibもしくはGnuplotを用いるとよい.

###38. ヒストグラム

単語の出現頻度のヒストグラム(横軸に出現頻度,縦軸に出現頻度をとる単語の種類数を棒グラフで表したもの)を描け.

####出来上がったコード:

main.py
# coding: utf-8
import MeCab
from collections import Counter
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties

fname = 'neko.txt'
fname_parsed = 'neko.txt.mecab'


def parse_neko():
	'''「吾輩は猫である」を形態素解析
	「吾輩は猫である」(neko.txt)を形態素解析してneko.txt.mecabに保存する
	'''

	with open(fname) as data_file, \
			open(fname_parsed, mode='w') as out_file:

		mecab = MeCab.Tagger()
		out_file.write(mecab.parse(data_file.read()))


def neco_lines():
	'''「吾輩は猫である」の形態素解析結果のジェネレータ
	「吾輩は猫である」の形態素解析結果を順次読み込んで、各形態素を
	・表層形(surface)
	・基本形(base)
	・品詞(pos)
	・品詞細分類1(pos1)
	の4つをキーとする辞書に格納し、1文ずつ、この辞書のリストとして返す

	戻り値:
	1文の各形態素を辞書化したリスト
	'''
	with open(fname_parsed) as file_parsed:

		morphemes = []
		for line in file_parsed:

			# 表層形はtab区切り、それ以外は','区切りでバラす
			cols = line.split('\t')
			if(len(cols) < 2):
				raise StopIteration		# 区切りがなければ終了
			res_cols = cols[1].split(',')

			# 辞書作成、リストに追加
			morpheme = {
				'surface': cols[0],
				'base': res_cols[6],
				'pos': res_cols[0],
				'pos1': res_cols[1]
			}
			morphemes.append(morpheme)

			# 品詞細分類1が'句点'なら文の終わりと判定
			if res_cols[1] == '句点':
				yield morphemes
				morphemes = []


# 形態素解析
parse_neko()

# Counterオブジェクトに単語をセット
word_counter = Counter()
for line in neco_lines():
	word_counter.update([morpheme['surface'] for morpheme in line])

# 全件取得
list_word = word_counter.most_common()

# 出現数のリスト取得
counts = list(zip(*list_word))[1]

# グラフで使うフォント情報(デフォルトのままでは日本語が表示できない)
fp = FontProperties(
	fname='/usr/share/fonts/truetype/takao-gothic/TakaoGothic.ttf'
)

# ヒストグラムのデータ指定
plt.hist(
	counts,				# データのリスト
	bins=20,			# ビンの数
	range=(1, 20))		# 値の範囲

# x軸の値の範囲の調整
plt.xlim(xmin=1, xmax=20)

# グラフのタイトル、ラベル指定
plt.title("38. ヒストグラム", fontproperties=fp)
plt.xlabel('出現頻度', fontproperties=fp)
plt.ylabel('単語の種類数', fontproperties=fp)

# グリッドを表示
plt.grid(axis='y')

# 表示
plt.show()

####実行結果:
Kobito.g7pCrq.png

###ヒストグラム
parse_neko()neco_lines()、およびword_counterを求める所までは前問と同じです。

ヒストグラムは、自分で階級ごとに集計したりせずに、値のリストをpyplot.hist()へ渡すだけで作ってくれます。これは便利!

実際にグラフをいくつか書かせてみましたが、ほとんどの単語が出現頻度は20以下のことがわかりました。そのため、ヒストグラムの階級数は20(bins=20)に、また集計する値の範囲も1から20(range=(1,20))にしています。

前問同様、x軸の範囲はデフォルトだと出現頻度0が入ってしまって空白ができるので、pyplot.xlim()で調整しました。

 
39本目のノックは以上です。誤りなどありましたら、ご指摘いただけますと幸いです。


実行結果には、100本ノックで用いるコーパス・データで配布されているデータの一部が含まれます。この第4章で用いているデータは青空文庫で公開されている夏目漱石の長編小説『吾輩は猫である』が元になっています。

5
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?