10
11

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

続・わかりやすい パターン認識 教師なし学習入門 [隠れマルコフモデル・ビタービアルゴリズムの実験]

Posted at

隠れマルコフモデル・ビタービアルゴリズムをPythonを使って実装してみた

わかりやすいパターン認識

隠れマルコフモデル・ビタービアルゴリズム

本の流れに沿ってコードを書いたので、少々汚いです!

c = 3                    # 状態数
s = [ "w1", "w2", "w3" ] # 状態
m = 2                    # 出力数
v = [ "v1", "v2" ]       # 出力記号
n = 3                    # 観測回数

# それぞれの状態の初期確率
p = [ 1/3, 1/3, 1/3 ]
# 状態遷移確率
A = [ [ 0.1, 0.7, 0.2 ],
      [ 0.2, 0.1, 0.7 ],
      [ 0.7, 0.2, 0.1 ] ]
# 状態毎のでのそれぞれの観測確率
B = [ [ 0.9, 0.1 ],
      [ 0.6, 0.4 ],
      [ 0.1, 0.9 ] ]

# p1をp[0], p2をp[1], p3をp[2]
# v1をv[0], v2をv[1]
# x1をx[0], x2をx[1], x3をx[2]
# として以下表現する
# 観測結果
x = [ 0, 1, 0 ] # v1, v2, v1という結果

class HMM:
    psi = []
    PSI = []
    t = 1
    def __init__(self, s, v, p, A, B):
        self.outputs = v
        self.states = s
        self.state_probabilities = p
        self.transition_probabilities = A
        self.emission_probabilities = B

    def viterbi_with_result(self, observations):
        self.observations = observations
        # Step1 初期化
        # 1回目なのでt = 1なので
        # x1 = v1, x2 = v1, x3 = v1
        self.psi.append({})
        self.PSI.append({})
        for index, state in enumerate(self.states):
            sp = self.state_probabilities[index]
            ep = self.emission_probabilities[index][observations[0]]
            self.psi[0][index] = (round(sp * ep, 4), index)
            self.PSI[0][index] = (0, None)
        self.print_process()

        # Step2 再帰的計算
        def calc_max_probability(current_state_index):
            results = []
            prev_t = self.t - 1
            for prev_state_index, state in enumerate(self.states):
                a = self.transition_probabilities[prev_state_index][current_state_index]
                prev_probability = self.psi[prev_t - 1][prev_state_index][0]
                results.append((prev_probability * a, prev_state_index))
            return max(results)

        for observation in observations[1:]:
            self.t = self.t + 1
            self.psi.append({})
            self.PSI.append({})
            for index, state in enumerate(self.states):
                prob, max_state_index = calc_max_probability(index)
                self.PSI[self.t - 1][index] = (prob, max_state_index)
                b = self.emission_probabilities[index][observations[self.t - 1]]
                self.psi[self.t - 1][index] = (round(prob * b, 4), index)
            self.print_process()

        # STEP3
        print("================================")
        print("結果")
        max_prob = max(self.psi[-1].values())
        last_i = max_prob[1]
        results = [None for t in range(self.t)]
        results[-1] = last_i

        for index in range(self.t)[1:]:
            t = self.t - index
            if t < 0: continue
            results[t - 1] = self.PSI[t][results[t]][1]
        print("■ 最も確率の高い遷移")
        print(" -> ".join(map(lambda x: self.states[x], results)))
        print("■ 上記の遷移確率")
        print(max_prob[0])

    def print_process(self):
        index = self.t - 1
        current_psi = self.psi[index]
        print("================================")
        print(str(self.t) + "回目 結果: " + self.outputs[self.observations[self.t-1]])
        print("ψ" + str(self.t) + "(1): " + self.states[current_psi[0][1]] + ": " + str(current_psi[0][0]))
        print("ψ" + str(self.t) + "(2): " + self.states[current_psi[1][1]] + ": " + str(current_psi[1][0]))
        print("ψ" + str(self.t) + "(3): " + self.states[current_psi[2][1]] + ": " + str(current_psi[2][0]))
        print("Ψ")
        print(max(self.PSI[index].values()))

if __name__=="__main__":
    hmm = HMM(s, v, p, A, B)
    hmm.viterbi_with_result(x)
10
11
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
10
11

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?