47
50

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Hadoop導入とPythonによるMapReduce

Posted at

Hadoop始めたいけどJavaで書くのめんどくさい… という人のためのチュートリアル.

HadoopはJavaで記述されているため基本的にはMapper/ReducerもJavaで記述するが,HadoopにはHadoop Streamingという機能があり,Unixの標準入出力を介してデータの受け渡しをすることができる.
これを用いてPythonでMapper/Reducerを書いてみた.もちろんHadoop Streamingを利用すればPython以外の言語でも書ける.

今回はUbuntu上に擬似分散環境を構築してみた.

Ubuntu12.04 + Haadoop2.4.1

Hadoopの環境構築

Javaがない場合はインストール

$ sudo apt-get update
$ sudo apt-get install openjdk-7-jdk

Hadoopをダウンロード

$ wget http://mirror.nexcess.net/apache/hadoop/common/hadoop-2.4.1/hadoop-2.4.1.tar.gz
$ tar zxvf hadoop-2.4.1.tar.gz
$ mv hadoop-2.4.1.tar.gz hadoop
$ rm hadoop-2.4.1.tar.gz
$ sudo mv hadoop /usr/local
$ cd /usr/local/hadoop
$ export PATH=$PATH:/usr/local/hadoop/bin #.zshrcに書いておくとよい

以下の4つのファイルを編集

$ vim etc/hadoop/core-site.xml
core-site.xml
...
<configuration>
     <property>
         <name>fs.default.name</name>
         <value>hdfs://localhost:9000</value>
     </property>
</configuration>
$ vim etc/hadoop/hdfs-site.xml
hdfs-site.xml
...
<configuration>
     <property>
         <name>dfs.replication</name>
         <value>1</value>
     </property>
</configuration>
$ mv etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
$ vim etc/hadoop/mapred-site.xml
mapred-site.xml
...
<configuration>
     <property>
         <name>dfs.replication</name>
         <value>1</value>
     </property>
</configuration>
$ vim etc/hadoop/hadoop-env.xml
hadoop-env.xml
...
export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64
export HADOOP_INSTALL=/usr/local/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH:$HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"
...

鍵がない場合は追加する

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

最後にnamenodeを初期化し,Hadoopを起動する

$ hdfs namenode -format
$ sbin/start-dfs.sh

PythonによるMapper/Reducerの記述

今回は,HadoopのサンプルコードであるWordCountをPythonで記述する

まず,入力ファイルを用意する

$ mkdir inputs
$ echo "a b b c c c" > inputs/input.txt

Mapper

$ vim mapper.py
mapper.py
#!/usr/bin/env python

import sys

for l in sys.stdin:
    for word in l.strip().split(): print '{0}\t1'.format(word)

Mapperは以下のようなものを出力する

a    1
b    1
b    1
c    1
c    1
c    1

Reducer

$ vim reducer.py
reducer.py
#!/usr/bin/env python

from collections import defaultdict
from operator import itemgetter
import sys

wordcount_dict = defaultdict(int)

for l in sys.stdin:
    word, count = line.strip().split('\t')
    wordcount_dict[word] += int(count)

for word, count in sorted(wordcount_dict.items(), key=itemgetter(0)):
    print '{0}\t{1}'.format(word, count)

ReducerはMapperで出力されたそれぞれのwordを数え上げ,以下のようなものを出力する

a    1
b    2
c    3

Hadoop Streamingによる実行

いよいよ上記のMapper/ReducerをHadoop上で実行する

まず.Hadoop Streamingのためのjarファイルをダウンロードする

$ wget http://repo1.maven.org/maven2/org/apache/hadoop/hadoop-streaming/2.4.1/hadoop-streaming-2.4.1.jar

HDFS上にディレクトリを作成し,入力ファイルをのせる
(ローカル上のファイルととHDFS上のファイルがこっちゃにならないように注意)

$ hdfs dfs -mkdir /user
$ hdfs dfs -mkdir /user/vagrant
$ hdfs dfs -put inputs/input.txt /user/vagrant

実行すると指定した出力ディレクトリに結果が格納される

$ hadoop jar hadoop-streaming-2.4.1.jar -mapper mapper.py -reducer reducer.py -input /user/vagrant/input.txt -output outputs
$ hdfs dfs -cat /user/vagrant/outputs/part-00000
a    1
b    2
c    3
47
50
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
47
50

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?