5
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Ruby-Processing ブレゼンハムのアルゴリズム

Last updated at Posted at 2015-09-15

ブレゼンハムアルゴリズム を参考にさせていただいて、Ruby-Processing で実装してみました。

bresenham.gif

bresenham.rb
load_library :vecmath

# 参考
#
# プレゼンハムアルゴリズム
# http://aidiary.hatenablog.com/entry/20050402/1251514618

def setup
  size 400, 400
end

# プレゼンハムアルゴリズムを用いて
# fm から to へのラインを求める
def build_line(fm, to)
  next_x = fm.x
  next_y = fm.y
  delta_x = to.x - fm.x
  delta_y = to.y - fm.y

  step_x = delta_x < 0 ? -1 : 1
  step_y = delta_y < 0 ? -1 : 1

  delta_x = (delta_x * 2).abs
  delta_y = (delta_y * 2).abs

  line =[Vec2D.new(next_x, next_y)]

  if delta_x > delta_y
    fraction = delta_y - delta_x / 2
    while next_x != to.x
      if fraction >= 0
        next_y += step_y
        fraction -= delta_x
      end
      next_x += step_x
      fraction += delta_y
      line << Vec2D.new(next_x, next_y)
    end
  else
    fraction = delta_x - delta_y / 2
    while next_y != to.y
      if fraction >= 0
        next_x += step_x
        fraction -= delta_y
      end
      next_y += step_y
      fraction += delta_x
      line << Vec2D.new(next_x, next_y)
    end
  end
  line
end

def draw
  background 255

  translate width/2, height/2

  n = 15 # ドットひとつ分のサイズ
  rows = height / n
  cols = width / n

  rect_mode CENTER
  no_fill
  stroke 60
  for i in 0..rows
    for j in 0..cols
      rect (j-cols/2) * n, (i-rows/2) * n, n, n
    end
  end

  x = mouse_x - width/2 + n/2
  y = mouse_y - height/2 + n/2
  fm = Vec2D.new(0, 0)
  to = Vec2D.new(x / n, y / n)
  line = build_line(fm, to)
  if line
    fill(100)
    line.each {|v|
      rect v.x * n, v.y * n, n, n
    }
  end

  # マウスの位置まで line() で直線描画(ブレゼンハムアルゴリズムとの比較用)
  stroke 0x28, 0x28, 0xcc
  stroke_width 2
  line 0, 0, mouse_x - width/2, mouse_y - height/2
  stroke 0
  stroke_width 1
end

コマンドラインから次のように実行します。

$ rp5 run bresenham.rb

リンク

5
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?