modeling with distance functionsの距離関数の一覧に沿って記事を書いています.
距離関数は
float dot2( in vec3 v ) { return dot(v,v); }
float udQuad( vec3 p, vec3 a, vec3 b, vec3 c, vec3 d )
{
vec3 ba = b - a; vec3 pa = p - a;
vec3 cb = c - b; vec3 pb = p - b;
vec3 dc = d - c; vec3 pc = p - c;
vec3 ad = a - d; vec3 pd = p - d;
vec3 nor = cross( ba, ad );
return sqrt(
(sign(dot(cross(ba,nor),pa)) +
sign(dot(cross(cb,nor),pb)) +
sign(dot(cross(dc,nor),pc)) +
sign(dot(cross(ad,nor),pd))<3.0)
?
min( min( min(
dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
dot2(dc*clamp(dot(dc,pc)/dot2(dc),0.0,1.0)-pc) ),
dot2(ad*clamp(dot(ad,pd)/dot2(ad),0.0,1.0)-pd) )
:
dot(nor,pa)*dot(nor,pa)/dot2(nor)
);
}
ん?
三角形の拡張じゃないか?
ということは、多角形に拡張できるのではないか?
とりあえず、五角形を書いてみた。
float udPentagon( vec3 p, vec3 a, vec3 b, vec3 c, vec3 d, vec3 e )
{
vec3 ba = b - a; vec3 pa = p - a;
vec3 cb = c - b; vec3 pb = p - b;
vec3 dc = d - c; vec3 pc = p - c;
vec3 ad = e - d; vec3 pd = p - d;
vec3 ae = a - e; vec3 pe = p - e;
vec3 nor = cross( ba, ad );
return sqrt(
(sign(dot(cross(ba,nor),pa)) +
sign(dot(cross(cb,nor),pb)) +
sign(dot(cross(dc,nor),pc)) +
sign(dot(cross(ad,nor),pd)) +
sign(dot(cross(ae,nor),pe)) < 4.0)
?
min( min( min( min(
dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
dot2(dc*clamp(dot(dc,pc)/dot2(dc),0.0,1.0)-pc) ),
dot2(ad*clamp(dot(ad,pd)/dot2(ad),0.0,1.0)-pd) ),
dot2(ae*clamp(dot(ae,pe)/dot2(ae),0.0,1.0)-pe) )
:
dot(nor,pa)*dot(nor,pa)/dot2(nor)
);
}
書けた!
で、とりあえず、球体との変形を交互にかませるときれいになった。
float pentagonToSphere(in vec3 p)
{
p = mat3(cos(time),-sin(time),0, sin(time), cos(time),0 ,0,0,1)*p;
return (length(p)-1.5)*abs(sin(time))+udPentagon(p,vec3(1.0, 0.0, 1.0), vec3(0.3090169943749474241023, 0.9510565162951535721164, 1.0), vec3(-0.8090169943749474241023, 0.5877852522924731291687, 1.0), vec3(-0.8090169943749474241023, -0.5877852522924731291687, 1.0), vec3(0.3090169943749474241023, -0.9510565162951535721164, 1.0))*(1.0-abs(sin(time)));
}
三角形と四角形への変形もいろいろ書いた
float udTriangleToQuad(in vec3 p)
{
// return udQuad(p, vec3(-1.0*sin(time), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
// return udQuad(p, vec3(-1.0*abs(cos(time)), 1.0*abs(sin(time)), 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
// return udQuad(p, vec3(-1.0*abs(cos(time)), 1.0*abs(sin(time)), 1.0), vec3(1.0*abs(cos(time)), 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
return udQuad(p, vec3(-1.0*abs(sin(time)), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0*sin(time), -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
// return udQuad(p, vec3(-1.0, 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0) )*abs(sin(time*0.7))+udTriangle(p, vec3(1.0, 1.0, 1.0), vec3(-1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0) )*(1.0-abs(sin(time*0.7)));
// return udQuad(p, vec3(-1.0*abs(mod(sin(time), 0.4)), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
}
// ============================================================================
// Quad
// ============================================================================
precision mediump float;
uniform vec2 resolution; // resolution (512.0, 512.0)
uniform vec2 mouse; // mouse(-1.0 ~ 1.0)
uniform float time; // time(1second == 1.0)
uniform sampler2D prevScene; // previous scene texture
float dot2( in vec3 v ) { return dot(v,v); }
float udQuad( vec3 p, vec3 a, vec3 b, vec3 c, vec3 d )
{
vec3 ba = b - a; vec3 pa = p - a;
vec3 cb = c - b; vec3 pb = p - b;
vec3 dc = d - c; vec3 pc = p - c;
vec3 ad = a - d; vec3 pd = p - d;
vec3 nor = cross( ba, ad );
return sqrt(
(sign(dot(cross(ba,nor),pa)) +
sign(dot(cross(cb,nor),pb)) +
sign(dot(cross(dc,nor),pc)) +
sign(dot(cross(ad,nor),pd))<3.0)
?
min( min( min(
dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
dot2(dc*clamp(dot(dc,pc)/dot2(dc),0.0,1.0)-pc) ),
dot2(ad*clamp(dot(ad,pd)/dot2(ad),0.0,1.0)-pd) )
:
dot(nor,pa)*dot(nor,pa)/dot2(nor)
);
}
float udTriangle( vec3 p, vec3 a, vec3 b, vec3 c )
{
vec3 ba = b - a; vec3 pa = p - a;
vec3 cb = c - b; vec3 pb = p - b;
vec3 ac = a - c; vec3 pc = p - c;
vec3 nor = cross( ba, ac );
return sqrt(
(sign(dot(cross(ba,nor),pa)) +
sign(dot(cross(cb,nor),pb)) +
sign(dot(cross(ac,nor),pc))<2.0)
?
min( min(
dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
dot2(ac*clamp(dot(ac,pc)/dot2(ac),0.0,1.0)-pc) )
:
dot(nor,pa)*dot(nor,pa)/dot2(nor)
);
}
float udPentagon( vec3 p, vec3 a, vec3 b, vec3 c, vec3 d, vec3 e )
{
vec3 ba = b - a; vec3 pa = p - a;
vec3 cb = c - b; vec3 pb = p - b;
vec3 dc = d - c; vec3 pc = p - c;
vec3 ad = e - d; vec3 pd = p - d;
vec3 ae = a - e; vec3 pe = p - e;
vec3 nor = cross( ba, ad );
return sqrt(
(sign(dot(cross(ba,nor),pa)) +
sign(dot(cross(cb,nor),pb)) +
sign(dot(cross(dc,nor),pc)) +
sign(dot(cross(ad,nor),pd)) +
sign(dot(cross(ae,nor),pe)) < 4.0)
?
min( min( min( min(
dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
dot2(dc*clamp(dot(dc,pc)/dot2(dc),0.0,1.0)-pc) ),
dot2(ad*clamp(dot(ad,pd)/dot2(ad),0.0,1.0)-pd) ),
dot2(ae*clamp(dot(ae,pe)/dot2(ae),0.0,1.0)-pe) )
:
dot(nor,pa)*dot(nor,pa)/dot2(nor)
);
}
float udTriangleToQuad(in vec3 p)
{
// return udQuad(p, vec3(-1.0*sin(time), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
// return udQuad(p, vec3(-1.0*abs(cos(time)), 1.0*abs(sin(time)), 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
// return udQuad(p, vec3(-1.0*abs(cos(time)), 1.0*abs(sin(time)), 1.0), vec3(1.0*abs(cos(time)), 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
return udQuad(p, vec3(-1.0*abs(sin(time)), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0*sin(time), -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
// return udQuad(p, vec3(-1.0, 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0) )*abs(sin(time*0.7))+udTriangle(p, vec3(1.0, 1.0, 1.0), vec3(-1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0) )*(1.0-abs(sin(time*0.7)));
// return udQuad(p, vec3(-1.0*abs(mod(sin(time), 0.4)), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
}
float udInstancePentagon(in vec3 p)
{
// p = mat3(1.0,0,0, 0,cos(time),-sin(time), 0,sin(time),cos(time) )*p;
// p = mat3(cos(time),0,-sin(time), 0,1,0, sin(time),0,cos(time))*p;
// p = mat3(cos(time),-sin(time),0, sin(time), cos(time),0 ,0,0,1)*p;
return udPentagon(p,vec3(1.0, 0.0, 1.0), vec3(0.3090169943749474241023, 0.9510565162951535721164, 1.0), vec3(-0.8090169943749474241023, 0.5877852522924731291687, 1.0), vec3(-0.8090169943749474241023, -0.5877852522924731291687, 1.0), vec3(0.3090169943749474241023, -0.9510565162951535721164, 1.0));
}
float pentagonToSphere(in vec3 p)
{
p = mat3(cos(time),-sin(time),0, sin(time), cos(time),0 ,0,0,1)*p;
return (length(p)-1.5)*abs(sin(time))+udPentagon(p,vec3(1.0, 0.0, 1.0), vec3(0.3090169943749474241023, 0.9510565162951535721164, 1.0), vec3(-0.8090169943749474241023, 0.5877852522924731291687, 1.0), vec3(-0.8090169943749474241023, -0.5877852522924731291687, 1.0), vec3(0.3090169943749474241023, -0.9510565162951535721164, 1.0))*(1.0-abs(sin(time)));
}
float udInstanceQuad(in vec3 p)
{
// p = mat3(1.0,0,0, 0,cos(time),-sin(time), 0,sin(time),cos(time) )*p;
// p = mat3(cos(time),0,-sin(time), 0,1,0, sin(time),0,cos(time))*p;
// p = mat3(cos(time),-sin(time),0, sin(time), cos(time),0 ,0,0,1)*p;
return udQuad(p, vec3(-1.0, 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0) );
}
float distanceHub(vec3 p){
// 0.4を書けて、rayの進行を遅らせている
// return udInstanceQuad(p)*0.3;
// return pentagonToSphere(p)*0.3;
// return udInstancePentagon(p)*0.3;
return udTriangleToQuad(p)*0.3;
}
// 法線
vec3 genNormal(vec3 p){
float d = 0.001;
// 法線を生成
return normalize(vec3(
distanceHub(p + vec3( d, 0.0, 0.0)) - distanceHub(p + vec3( -d, 0.0, 0.0)),
distanceHub(p + vec3(0.0, d, 0.0)) - distanceHub(p + vec3(0.0, -d, 0.0)),
distanceHub(p + vec3(0.0, 0.0, d)) - distanceHub(p + vec3(0.0, 0.0, -d))
));
}
// 図形ごとに色をわける
vec3 doColor(vec3 p){
float e = 0.001;
// if (udInstanceQuad(p)<e){
// vec3 normal = genNormal(p);
// vec3 light = normalize(vec3(1.0, 1.0, 1.0));
// float diff = max(dot(normal, light), 0.1);
// return vec3(diff, diff, diff);
// }
if (udTriangleToQuad(p)<e){
vec3 normal = genNormal(p);
vec3 light = normalize(vec3(1.0, 1.0, 1.0));
float diff = max(dot(normal, light), 0.1);
return vec3(diff, diff, diff);
}
// if (udInstancePentagon(p)<e){
// vec3 normal = genNormal(p);
// vec3 light = normalize(vec3(1.0, 1.0, 1.0));
// float diff = max(dot(normal, light), 0.1);
// return vec3(diff, diff, diff);
// }
// if (pentagonToSphere(p)<e){
// vec3 normal = genNormal(p);
// vec3 light = normalize(vec3(1.0, 1.0, 1.0));
// float diff = max(dot(normal, light), 0.1);
// return vec3(diff*abs(cos(time)*cos(time/2.0)), diff*abs(cos(time)*sin(time/2.0)), diff*abs(sin(time)));
// }
return vec3(0.0);
}
// カメラのワーク
void main(){
// スクリーンスペースを考慮して座標を正規化
vec2 p = (gl_FragCoord.xy * 2.0 - resolution) / min(resolution.x, resolution.y);
// カメラを定義
vec3 cPos = vec3(0.0, 0.0, 3.0); // カメラの位置
vec3 cDir = vec3(0.0, 0.0, -1.0); // カメラの向き(視線)
vec3 cUp = vec3(0.0, 1.0, 0.0); // カメラの上方向
vec3 cSide = cross(cDir, cUp); // 外積を使って横方向を算出
float targetDepth = 1.0; // フォーカスする深度
// カメラの情報からレイを定義
vec3 ray = normalize(cSide * p.x + cUp * p.y + cDir * targetDepth);
// マーチングループを組む
float dist = 0.0; // レイとオブジェクト間の最短距離
float rLen = 0.0; // レイに継ぎ足す長さ
vec3 rPos = cPos; // レイの先端位置(初期位置)
// レイが進む処理(マーチングループ)
for(int i = 0; i < 32; ++i){
dist = distanceHub(rPos);
rLen += dist;
rPos = cPos + ray * rLen;
}
// レイとオブジェクトの距離を確認
vec3 color = doColor(rPos);
gl_FragColor = vec4(color, 1.0);
}