7
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

GLSLレイマーチング研究_距離関数について勉強してみた20(Quadの関数をいじる)

Last updated at Posted at 2017-04-19

modeling with distance functionsの距離関数の一覧に沿って記事を書いています.

距離関数は

float dot2( in vec3 v ) { return dot(v,v); }
float udQuad( vec3 p, vec3 a, vec3 b, vec3 c, vec3 d )
{
	vec3 ba = b - a; vec3 pa = p - a;
	vec3 cb = c - b; vec3 pb = p - b;
	vec3 dc = d - c; vec3 pc = p - c;
	vec3 ad = a - d; vec3 pd = p - d;
	vec3 nor = cross( ba, ad );

	return sqrt(
	(sign(dot(cross(ba,nor),pa)) +
		sign(dot(cross(cb,nor),pb)) +
		sign(dot(cross(dc,nor),pc)) +
		sign(dot(cross(ad,nor),pd))<3.0)
		?
		min( min( min(
		dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
		dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
		dot2(dc*clamp(dot(dc,pc)/dot2(dc),0.0,1.0)-pc) ),
		dot2(ad*clamp(dot(ad,pd)/dot2(ad),0.0,1.0)-pd) )
		:
		dot(nor,pa)*dot(nor,pa)/dot2(nor)
	);
}

ん?

三角形の拡張じゃないか?

image01.PNG

ということは、多角形に拡張できるのではないか?

とりあえず、五角形を書いてみた。

float udPentagon( vec3 p, vec3 a, vec3 b, vec3 c, vec3 d, vec3 e )
{
	vec3 ba = b - a; vec3 pa = p - a;
	vec3 cb = c - b; vec3 pb = p - b;
	vec3 dc = d - c; vec3 pc = p - c;
	vec3 ad = e - d; vec3 pd = p - d;
	vec3 ae = a - e; vec3 pe = p - e;
	vec3 nor = cross( ba, ad );

	return sqrt(
	(sign(dot(cross(ba,nor),pa)) +
		sign(dot(cross(cb,nor),pb)) +
		sign(dot(cross(dc,nor),pc)) +
		sign(dot(cross(ad,nor),pd)) +
		sign(dot(cross(ae,nor),pe)) < 4.0)
		?
		min( min( min( min(
		dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
		dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
		dot2(dc*clamp(dot(dc,pc)/dot2(dc),0.0,1.0)-pc) ),
		dot2(ad*clamp(dot(ad,pd)/dot2(ad),0.0,1.0)-pd) ),
		dot2(ae*clamp(dot(ae,pe)/dot2(ae),0.0,1.0)-pe) )
		:
		dot(nor,pa)*dot(nor,pa)/dot2(nor)
	);
}

image02.PNG

書けた!

で、とりあえず、球体との変形を交互にかませるときれいになった。

リンク

float pentagonToSphere(in vec3 p)
{
    p = mat3(cos(time),-sin(time),0, sin(time), cos(time),0 ,0,0,1)*p;
    return (length(p)-1.5)*abs(sin(time))+udPentagon(p,vec3(1.0, 0.0, 1.0), vec3(0.3090169943749474241023, 0.9510565162951535721164, 1.0), vec3(-0.8090169943749474241023, 0.5877852522924731291687, 1.0), vec3(-0.8090169943749474241023, -0.5877852522924731291687, 1.0), vec3(0.3090169943749474241023, -0.9510565162951535721164, 1.0))*(1.0-abs(sin(time)));
}

motion01.gif

三角形と四角形への変形もいろいろ書いた

float udTriangleToQuad(in vec3 p)
{
    // return udQuad(p, vec3(-1.0*sin(time), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
    // return udQuad(p, vec3(-1.0*abs(cos(time)), 1.0*abs(sin(time)), 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
    // return udQuad(p, vec3(-1.0*abs(cos(time)), 1.0*abs(sin(time)), 1.0), vec3(1.0*abs(cos(time)), 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
    return udQuad(p, vec3(-1.0*abs(sin(time)), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0*sin(time), -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
    // return udQuad(p, vec3(-1.0, 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0) )*abs(sin(time*0.7))+udTriangle(p, vec3(1.0, 1.0, 1.0), vec3(-1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0) )*(1.0-abs(sin(time*0.7)));
    // return udQuad(p, vec3(-1.0*abs(mod(sin(time), 0.4)), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
}

motion02.gif

ソース

// ============================================================================
// Quad
// ============================================================================

precision mediump float;
uniform vec2 resolution;     // resolution (512.0, 512.0)
uniform vec2 mouse;          // mouse(-1.0 ~ 1.0)
uniform float time;          // time(1second == 1.0)
uniform sampler2D prevScene; // previous scene texture


float dot2( in vec3 v ) { return dot(v,v); }
float udQuad( vec3 p, vec3 a, vec3 b, vec3 c, vec3 d )
{
	vec3 ba = b - a; vec3 pa = p - a;
	vec3 cb = c - b; vec3 pb = p - b;
	vec3 dc = d - c; vec3 pc = p - c;
	vec3 ad = a - d; vec3 pd = p - d;
	vec3 nor = cross( ba, ad );

	return sqrt(
	(sign(dot(cross(ba,nor),pa)) +
		sign(dot(cross(cb,nor),pb)) +
		sign(dot(cross(dc,nor),pc)) +
		sign(dot(cross(ad,nor),pd))<3.0)
		?
		min( min( min(
		dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
		dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
		dot2(dc*clamp(dot(dc,pc)/dot2(dc),0.0,1.0)-pc) ),
		dot2(ad*clamp(dot(ad,pd)/dot2(ad),0.0,1.0)-pd) )
		:
		dot(nor,pa)*dot(nor,pa)/dot2(nor)
	);
}

float udTriangle( vec3 p, vec3 a, vec3 b, vec3 c )
{
	vec3 ba = b - a; vec3 pa = p - a;
	vec3 cb = c - b; vec3 pb = p - b;
	vec3 ac = a - c; vec3 pc = p - c;
	vec3 nor = cross( ba, ac );

	return sqrt(
		(sign(dot(cross(ba,nor),pa)) +
		sign(dot(cross(cb,nor),pb)) +
		sign(dot(cross(ac,nor),pc))<2.0)
		?
		min( min(
		dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
		dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
		dot2(ac*clamp(dot(ac,pc)/dot2(ac),0.0,1.0)-pc) )
		:
		dot(nor,pa)*dot(nor,pa)/dot2(nor)
	);
}


float udPentagon( vec3 p, vec3 a, vec3 b, vec3 c, vec3 d, vec3 e )
{
	vec3 ba = b - a; vec3 pa = p - a;
	vec3 cb = c - b; vec3 pb = p - b;
	vec3 dc = d - c; vec3 pc = p - c;
	vec3 ad = e - d; vec3 pd = p - d;
	vec3 ae = a - e; vec3 pe = p - e;
	vec3 nor = cross( ba, ad );

	return sqrt(
	(sign(dot(cross(ba,nor),pa)) +
		sign(dot(cross(cb,nor),pb)) +
		sign(dot(cross(dc,nor),pc)) +
		sign(dot(cross(ad,nor),pd)) +
		sign(dot(cross(ae,nor),pe)) < 4.0)
		?
		min( min( min( min(
		dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
		dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
		dot2(dc*clamp(dot(dc,pc)/dot2(dc),0.0,1.0)-pc) ),
		dot2(ad*clamp(dot(ad,pd)/dot2(ad),0.0,1.0)-pd) ),
		dot2(ae*clamp(dot(ae,pe)/dot2(ae),0.0,1.0)-pe) )
		:
		dot(nor,pa)*dot(nor,pa)/dot2(nor)
	);
}


float udTriangleToQuad(in vec3 p)
{
    // return udQuad(p, vec3(-1.0*sin(time), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
    // return udQuad(p, vec3(-1.0*abs(cos(time)), 1.0*abs(sin(time)), 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
    // return udQuad(p, vec3(-1.0*abs(cos(time)), 1.0*abs(sin(time)), 1.0), vec3(1.0*abs(cos(time)), 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
    return udQuad(p, vec3(-1.0*abs(sin(time)), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0*sin(time), -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
    // return udQuad(p, vec3(-1.0, 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0) )*abs(sin(time*0.7))+udTriangle(p, vec3(1.0, 1.0, 1.0), vec3(-1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0) )*(1.0-abs(sin(time*0.7)));
    // return udQuad(p, vec3(-1.0*abs(mod(sin(time), 0.4)), 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0));
}


float udInstancePentagon(in vec3 p)
{
    // p = mat3(1.0,0,0, 0,cos(time),-sin(time), 0,sin(time),cos(time) )*p;
    // p = mat3(cos(time),0,-sin(time), 0,1,0, sin(time),0,cos(time))*p;
    // p = mat3(cos(time),-sin(time),0, sin(time), cos(time),0 ,0,0,1)*p;
    return udPentagon(p,vec3(1.0, 0.0, 1.0), vec3(0.3090169943749474241023, 0.9510565162951535721164, 1.0), vec3(-0.8090169943749474241023, 0.5877852522924731291687, 1.0), vec3(-0.8090169943749474241023, -0.5877852522924731291687, 1.0), vec3(0.3090169943749474241023, -0.9510565162951535721164, 1.0));
}

float pentagonToSphere(in vec3 p)
{
    p = mat3(cos(time),-sin(time),0, sin(time), cos(time),0 ,0,0,1)*p;
    return (length(p)-1.5)*abs(sin(time))+udPentagon(p,vec3(1.0, 0.0, 1.0), vec3(0.3090169943749474241023, 0.9510565162951535721164, 1.0), vec3(-0.8090169943749474241023, 0.5877852522924731291687, 1.0), vec3(-0.8090169943749474241023, -0.5877852522924731291687, 1.0), vec3(0.3090169943749474241023, -0.9510565162951535721164, 1.0))*(1.0-abs(sin(time)));
}


float udInstanceQuad(in vec3 p)
{
    // p = mat3(1.0,0,0, 0,cos(time),-sin(time), 0,sin(time),cos(time) )*p;
    // p = mat3(cos(time),0,-sin(time), 0,1,0, sin(time),0,cos(time))*p;
    // p = mat3(cos(time),-sin(time),0, sin(time), cos(time),0 ,0,0,1)*p;
    return udQuad(p, vec3(-1.0, 1.0, 1.0), vec3(1.0, 1.0, 1.0), vec3(1.0, -1.0, 1.0),vec3(-1.0, -1.0, 1.0) );

}


float distanceHub(vec3 p){
	// 0.4を書けて、rayの進行を遅らせている
// 	return udInstanceQuad(p)*0.3;
// 	return pentagonToSphere(p)*0.3;
// 	return udInstancePentagon(p)*0.3;
	return udTriangleToQuad(p)*0.3;
}

// 法線
vec3 genNormal(vec3 p){
	float d = 0.001;
	// 法線を生成
	return normalize(vec3(
		distanceHub(p + vec3(  d, 0.0, 0.0)) - distanceHub(p + vec3( -d, 0.0, 0.0)),
		distanceHub(p + vec3(0.0,   d, 0.0)) - distanceHub(p + vec3(0.0,  -d, 0.0)),
		distanceHub(p + vec3(0.0, 0.0,   d)) - distanceHub(p + vec3(0.0, 0.0,  -d))
	));
}

// 図形ごとに色をわける
vec3 doColor(vec3 p){
	float e = 0.001;
// 	if (udInstanceQuad(p)<e){
// 		vec3 normal = genNormal(p);
// 		vec3 light  = normalize(vec3(1.0, 1.0, 1.0));
// 		float diff  = max(dot(normal, light), 0.1);
// 		return vec3(diff, diff, diff);
// 	}
	if (udTriangleToQuad(p)<e){
		vec3 normal = genNormal(p);
		vec3 light  = normalize(vec3(1.0, 1.0, 1.0));
		float diff  = max(dot(normal, light), 0.1);
		return vec3(diff, diff, diff);
	}
// 	if (udInstancePentagon(p)<e){
// 		vec3 normal = genNormal(p);
// 		vec3 light  = normalize(vec3(1.0, 1.0, 1.0));
// 		float diff  = max(dot(normal, light), 0.1);
// 		return vec3(diff, diff, diff);
// 	}
// 	if (pentagonToSphere(p)<e){
// 		vec3 normal = genNormal(p);
// 		vec3 light  = normalize(vec3(1.0, 1.0, 1.0));
// 		float diff  = max(dot(normal, light), 0.1);
// 		return vec3(diff*abs(cos(time)*cos(time/2.0)), diff*abs(cos(time)*sin(time/2.0)), diff*abs(sin(time)));
// 	}
	return vec3(0.0);
}

// カメラのワーク
void main(){
	// スクリーンスペースを考慮して座標を正規化
	vec2 p = (gl_FragCoord.xy * 2.0 - resolution) / min(resolution.x, resolution.y);
	// カメラを定義
	vec3 cPos  = vec3(0.0, 0.0,  3.0);   // カメラの位置
	vec3 cDir  = vec3(0.0, 0.0, -1.0);   // カメラの向き(視線)
	vec3 cUp   = vec3(0.0, 1.0,  0.0);   // カメラの上方向
	vec3 cSide = cross(cDir, cUp);       // 外積を使って横方向を算出
	float targetDepth = 1.0;             // フォーカスする深度

	// カメラの情報からレイを定義
	vec3 ray = normalize(cSide * p.x + cUp * p.y + cDir * targetDepth);
	// マーチングループを組む
	float dist = 0.0; // レイとオブジェクト間の最短距離
	float rLen = 0.0; // レイに継ぎ足す長さ
	vec3 rPos = cPos; // レイの先端位置(初期位置)

	// レイが進む処理(マーチングループ)
	for(int i = 0; i < 32; ++i){
		dist = distanceHub(rPos);
		rLen += dist;
		rPos = cPos + ray * rLen;
	}

	// レイとオブジェクトの距離を確認
	vec3 color = doColor(rPos);
	gl_FragColor = vec4(color, 1.0);
}
7
3
2

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
7
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?