4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ClojureでJubatusその2(Recommender:推薦)

Posted at

ClojureからJubatusのRecommender(推薦)を使ってみるサンプルです。
公式サイトの http://jubat.us/ja/tutorial/recommender.html のClojure版です。
プロ野球の野手成績を学習し、似た成績の野手を3人推薦するプログラムになっています。
動作に必要なnpb_similar_player.jsonとbaseball.csvは上記リンク先からどうぞ。

jubarecommender -f npb_similar_player.json でJubatusサーバを起動しておけば以下のサンプルを実行できます。

recommender.clj
(ns jubatus-sample.recommender
  (:require [clojure.java.io :as io]
            [clojure.string :as s])
  (:import [us.jubat.recommender RecommenderClient]
           [us.jubat.common Datum]))

(defn map->datum [hmap]
  (let [d (Datum.)]
    (doseq [[k v] hmap]
      (condp instance? v 
        String (.addString d k v)
        Number (.addNumber d k v)
        (.addBinary d k v)))
    d))

(defn- datum [values]
  (let [ks ["チーム" "打率" "試合数" "打席" "打数" "安打" "本塁打" "打点" "盗塁" "四球"
            "死球" "三振" "犠打" "併殺打" "長打率" "出塁率" "OPS" "RC27" "XR27"]
        vs (cons (first values) (map #(Double/parseDouble %) (rest values)))]
    (map->datum (zipmap ks vs))))

(def ids (atom []))

(defn update [client]
  (reset! ids [])
  (with-open [r (io/reader "baseball.csv")]
    (doseq [line (line-seq r)]
      (let [values (s/split line #",")
            id (first values)]
        (swap! ids conj id)
        (.updateRow client id (datum (rest values)))))))

(defn analyze [client]
  (doseq [id @ids]
    (let [result (rest (.similarRowFromId client id 4))]
      (println "player" id "is similar to :" (s/join "," (map #(.-id %) result))))))

(def client (RecommenderClient. "127.0.0.1" 9199 "recommender_baseball" 1))
(update client)
(analyze client)

map->datumは引数のMapのvalueの型を見て適切にDatumオブジェクトを構築する関数です。
datumはCSVファイルの2カラム目以降のデータをもらってそれをDatumに変換しています。
updateはCSVファイルを読み込んで1行ずつ学習を行っています。後で使うためにidも保存しています。
analyzeはそれぞれのidごとに(野手ごとに)似た野手を取得してプリントしています。

4
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?