10
12

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

scikit-learnで糖尿病データの回帰分析をやってみた

Posted at

元は scikit-learnで線形モデルとカーネルモデルの回帰分析をやってみた - イラストで学ぶ機会学習に書いていましたが、ややこしいので別記事にしました。

データセットはsklearn.datasets.load_diabetes を使います。

糖尿病患者442名のデータが入っており、基礎項目(age, sex, body mass index, average blood pressure)と6つの血液検査項目を入力とし、1年後の進行状況を予測ターゲットにします。

データを見る

まずやるべきはデータの性質を調べることです。

import pandas as pd
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline

diabetes = datasets.load_diabetes()

train_data = diabetes.data[:-20]
test_data  = diabetes.data[-20:]
train_target = diabetes.target[:-20]
test_target = diabetes.target[-20:]

df = pd.DataFrame(diabetes.data, columns=("age", "sex", "bmi", "map", "tc", "ldl", "hdl", "tch", "ltg", "glu"))
df['target'] = diabetes.target

入力データは正規化されていることがわかります。

スクリーンショット 2016-09-03 11.51.10.png

seabornでいくつかのデータをプロットしてみます。

import seaborn as sns

sns.jointplot(x="age", y="target", data=df)
sns.jointplot(x="sex", y="target", data=df)
sns.jointplot(x="ltg", y="target", data=df)

diabetes_age.png

diabetes_sex.png

diabetes_ltg.png

ltgにはある程度の相関が見られますが、ageやsexにはあまり相関が見えません。

線形モデルでの回帰

from sklearn import linear_model
from sklearn.kernel_ridge import KernelRidge
from sklearn.gaussian_process import GaussianProcess

regr = linear_model.LinearRegression()
regr.fit(train_data, train_target)

print(regr.score(test_data, test_target))

スコアは 0.58 でした。

カーネルモデルでの回帰

散布図を見ると、カーネルモデルではフィッティングしづらそうですが、一応やってみます。

k_ridge = KernelRidge(alpha=1.0, kernel='rbf')
k_ridge.fit(train_data, train_target)

print(k_ridge.score(test_data, test_target))

スコアは 0.20 でした。

10
12
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
10
12

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?