LoginSignup
2
2

More than 5 years have passed since last update.

Pythonで平面骨組解析(4)強制変位の取扱

Posted at

概要

このプログラムでは,剛性マトリックスの大きさを変えずに境界条件を導入し,連立方程式を解いている.
この方法を用いながら,ゼロでない強制変位を与えた場合の解法を考える.これは,連立一次方程式における,未知数と既知数の入れ替えであり,考え方としてはそれほど難しいものではない.

簡単な事例として,以下の連立一次方程式を考える.
$$
\begin{align}
& k_{11} x_1 + k_{12} x_2 + k_{13} x_3 = f_1 \\
& k_{21} x_2 + k_{22} x_2 + k_{23} x_3 = f_2 \\
& k_{31} x_3 + k_{32} x_2 + k_{33} x_3 = f_3 \\
\end{align}
$$

ここで,未知数が $x_1, x_3, f_2$,既知数が $f_1, f_3, x_2$だとすれば,行列演算を行うためには,以下のように書き換える必要がある.
$$
\begin{align}
& k_{11} x_1 + 0 + k_{13} x_3 = f_1 - k_{12} x_2 \\
& k_{21} x_2 - f_2 + k_{23} x_3 = 0 - k_{22} x_2 \\
& k_{31} x_3 + 0 + k_{33} x_3 = f_3 - k_{32} x_2 \\
\end{align}
$$

上記関係を,拡張して考えると,以下の通りとなる.

元の剛性方程式

$$
\begin{equation}
\begin{bmatrix}
k_{11} & \ldots & k_{1i} & \ldots & k_{1j} & \ldots & k_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
k_{i1} & \ldots & k_{ii} & \ldots & k_{ij} & \ldots & k_{in} \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
k_{j1} & \ldots & k_{ji} & \ldots & k_{jj} & \ldots & k_{jn} \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
k_{n1} & \ldots & k_{ni} & \ldots & k_{nj} & \ldots & k_{nn}
\end{bmatrix}
\begin{Bmatrix}
\delta_1 \\
\vdots \\
\delta_i \\
\vdots \\
\delta_j \\
\vdots \\
\delta_n
\end{Bmatrix}
=\begin{Bmatrix}
f_1 \\
\vdots \\
f_i \\
\vdots \\
f_j \\
\vdots \\
f_n
\end{Bmatrix}
\end{equation}
$$

境界条件導入後の剛性方程式

$\delta_i$ および $\delta_j$ が既知とすれば,剛性マトリックスの $k_{ii}$ および $k_{jj}$ を $1$ とし,それ以外の $i$ 列および $j$ 列の要素をゼロとする処理を行う.また剛性マトリックスにおける $i$ 列および $j$ 列の効果を右辺に移項する.
$$
\begin{equation}
\begin{bmatrix}
k_{11} & \ldots & 0 & \ldots & 0 & \ldots & k_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
k_{i1} & \ldots & 1 & \ldots & 0 & \ldots & k_{in} \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
k_{j1} & \ldots & 0 & \ldots & 1 & \ldots & k_{jn} \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
k_{n1} & \ldots & 0 & \ldots & 0 & \ldots & k_{nn}
\end{bmatrix}
\begin{Bmatrix}
\delta_1 \\
\vdots \\
-f_i \\
\vdots \\
-f_j \\
\vdots \\
\delta_n
\end{Bmatrix}
=\begin{Bmatrix}
f_1 \\
\vdots \\
0 \\
\vdots \\
0 \\
\vdots \\
f_n
\end{Bmatrix}
-\delta_i
\begin{Bmatrix}
k_{1i} \\
\vdots \\
k_{ii} \\
\vdots \\
k_{ji} \\
\vdots \\
k_{ni}
\end{Bmatrix}
-\delta_j
\begin{Bmatrix}
k_{1j} \\
\vdots \\
k_{ij} \\
\vdots \\
k_{jj} \\
\vdots \\
k_{nj}
\end{Bmatrix}
\end{equation}
$$

修正プログラム

py_frame_r.py
import numpy as np
import sys
import time

def print_inp(fnameW,npoin,nele,nsec,npfix,nlod,ae,x,fp,mpfix,rdis,node):
    fout=open(fnameW,'w')
    # print out of input data
    print('{0:>5s} {1:>5s} {2:>5s} {3:>5s} {4:>5s}'.format('npoin','nele','nsec','npfix','nlod'),file=fout)
    print('{0:5d} {1:5d} {2:5d} {3:5d} {4:5d}'.format(npoin,nele,nsec,npfix,nlod),file=fout)
    print('{0:>5s} {1:>15s} {2:>15s} {3:>15s}'.format('sec','A','I','E'),file=fout)
    for i in range(0,nsec):
        print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e}'.format(i+1,ae[0,i],ae[1,i],ae[2,i]),file=fout)
    print('{0:>5s} {1:>15s} {2:>15s} {3:>15s} {4:>15s} {5:>15s} {6:>5s} {7:>5s} {8:>5s}'
    .format('node','x','y','fx','fy','fr','kox','koy','kor'),file=fout)
    for i in range(0,npoin):
        lp=i+1
        print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e} {4:15.7e} {5:15.7e} {6:5d} {7:5d} {8:5d}'
        .format(lp,x[0,i],x[1,i],fp[3*lp-3],fp[3*lp-2],fp[3*lp-1],mpfix[0,i],mpfix[1,i],mpfix[2,i]),file=fout)
    print('{0:>5s} {1:>5s} {2:>5s} {3:>5s} {4:>15s} {5:>15s} {6:>15s}'
    .format('node','kox','koy','kor','rdis_x','rdis_y','rdis_r'),file=fout)
    for i in range(0,npoin):
        if 0<mpfix[0,i]+mpfix[1,i]+mpfix[2,i]:
            lp=i+1
            print('{0:5d} {1:5d} {2:5d} {3:5d} {4:15.7e} {5:15.7e} {6:15.7e}'
            .format(lp,mpfix[0,i],mpfix[1,i],mpfix[2,i],rdis[0,i],rdis[1,i],rdis[2,i]),file=fout)
    print('{0:>5s} {1:>5s} {2:>5s} {3:>5s}'.format('elem','i','j','sec'),file=fout)
    for ne in range(0,nele):
        print('{0:5d} {1:5d} {2:5d} {3:5d}'.format(ne+1,node[0,ne],node[1,ne],node[2,ne]),file=fout)
    fout.close()

def print_out(fnameW,npoin,nele,disg,fsec):
    fout=open(fnameW,'a')
    # displacement
    print('{0:>5s} {1:>15s} {2:>15s} {3:>15s}'.format('node','dis-x','dis-y','dis-r'),file=fout)
    for i in range(0,npoin):
        lp=i+1
        print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e}'.format(lp,disg[3*lp-3],disg[3*lp-2],disg[3*lp-1]),file=fout)
    # section force
    print('{0:>5s} {1:>15s} {2:>15s} {3:>15s} {4:>15s} {5:>15s} {6:>15s}'
    .format('elem','N_i','S_i','M_i','N_j','S_j','M_j'),file=fout)
    for ne in range(0,nele):
        print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e} {4:15.7e} {5:15.7e} {6:15.7e}'
        .format(ne+1,fsec[0,ne],fsec[1,ne],fsec[2,ne],fsec[3,ne],fsec[4,ne],fsec[5,ne]),file=fout)
    fout.close()


def STIFF(i,node,x,ae):
    ek=np.zeros([6,6],dtype=np.float64) # local stiffness matrix
    tt=np.zeros([6,6],dtype=np.float64) # transformation matrix
    mpf=node[0,i]
    mps=node[1,i]
    x1=x[0,mpf-1]
    y1=x[1,mpf-1]
    x2=x[0,mps-1]
    y2=x[1,mps-1]
    xx=x2-x1
    yy=y2-y1
    el=np.sqrt(xx**2+yy**2)
    mb=node[2,i]
    aa=ae[0,mb-1]
    am=ae[1,mb-1]
    ee=ae[2,mb-1]
    EA=ee*aa
    EI=ee*am
    ek[0,0]= EA/el; ek[0,1]=         0.0; ek[0,2]=        0.0; ek[0,3]=-EA/el; ek[0,4]=         0.0; ek[0,5]=        0.0
    ek[1,0]=   0.0; ek[1,1]= 12*EI/el**3; ek[1,2]= 6*EI/el**2; ek[1,3]=   0.0; ek[1,4]=-12*EI/el**3; ek[1,5]= 6*EI/el**2
    ek[2,0]=   0.0; ek[2,1]=  6*EI/el**2; ek[2,2]= 4*EI/el   ; ek[2,3]=   0.0; ek[2,4]= -6*EI/el**2; ek[2,5]= 2*EI/el
    ek[3,0]=-EA/el; ek[3,1]=         0.0; ek[3,2]=        0.0; ek[3,3]= EA/el; ek[3,4]=         0.0; ek[3,5]=        0.0
    ek[4,0]=   0.0; ek[4,1]=-12*EI/el**3; ek[4,2]=-6*EI/el**2; ek[4,3]=   0.0; ek[4,4]= 12*EI/el**3; ek[4,5]=-6*EI/el**2
    ek[5,0]=   0.0; ek[5,1]=  6*EI/el**2; ek[5,2]= 2*EI/el   ; ek[5,3]=   0.0; ek[5,4]= -6*EI/el**2; ek[5,5]= 4*EI/el
    s=yy/el
    c=xx/el
    tt[0,0]=  c; tt[0,1]=  s; tt[0,2]=0.0; tt[0,3]=0.0; tt[0,4]=0.0; tt[0,5]=0.0
    tt[1,0]= -s; tt[1,1]=  c; tt[1,2]=0.0; tt[1,3]=0.0; tt[1,4]=0.0; tt[1,5]=0.0
    tt[2,0]=0.0; tt[2,1]=0.0; tt[2,2]=1.0; tt[2,3]=0.0; tt[2,4]=0.0; tt[2,5]=0.0
    tt[3,0]=0.0; tt[3,1]=0.0; tt[3,2]=0.0; tt[3,3]=  c; tt[3,4]=  s; tt[3,5]=0.0
    tt[4,0]=0.0; tt[4,1]=0.0; tt[4,2]=0.0; tt[4,3]= -s; tt[4,4]=  c; tt[4,5]=0.0
    tt[5,0]=0.0; tt[5,1]=0.0; tt[5,2]=0.0; tt[5,3]=0.0; tt[5,4]=0.0; tt[5,5]=1.0
    return ek,tt,mpf,mps

# Main routine
start=time.time()
args = sys.argv
fnameR=args[1] # input data file
fnameW=args[2] # output data file

f=open(fnameR,'r')
text=f.readline()
text=text.strip()
text=text.split()
npoin=int(text[0]) # Number of nodes
nele =int(text[1]) # Number of elements
nsec =int(text[2]) # Number of sections
npfix=int(text[3]) # Number of restricted nodes
nlod =int(text[4]) # Number of loaded nodes
n=3*npoin

x    =np.zeros([2,npoin],dtype=np.float64) # Coordinates of nodes
ae   =np.zeros([3,nsec],dtype=np.float64)  # Section characteristics
node =np.zeros([3,nele],dtype=np.int)      # Node-element relationship
fp   =np.zeros(3*npoin,dtype=np.float64)   # External force vector
mpfix=np.zeros([3,npoin],dtype=np.int)     # Ristrict conditions
rdis =np.zeros([3,npoin],dtype=np.float64) # Ristricted displacement
ir   =np.zeros(6,dtype=np.int)             # Work vector for matrix assembly
gk   =np.zeros([n,n],dtype=np.float64)     # Global stiffness matrix
fsec =np.zeros([6,nele],dtype=np.float64)  # Section force vector
work =np.zeros(6,dtype=np.float64)         # work vector for section force calculation

# section characteristics
for i in range(0,nsec):
    text=f.readline()
    text=text.strip()
    text=text.split()
    ae[0,i]=float(text[0]) #section area
    ae[1,i]=float(text[1]) #moment of inertia
    ae[2,i]=float(text[2]) #elastic modulus
# element-node
for i in range(0,nele):
    text=f.readline()
    text=text.strip()
    text=text.split()
    node[0,i]=int(text[0]) #node_1
    node[1,i]=int(text[1]) #node_2
    node[2,i]=int(text[2]) #section characteristic number
# node coordinates
for i in range(0,npoin):
    text=f.readline()
    text=text.strip()
    text=text.split()
    x[0,i]=float(text[0]) # x-coordinate
    x[1,i]=float(text[1]) # y-coordinate
# boundary conditions (0:free, 1:restricted)
for i in range(0,npfix):
    text=f.readline()
    text=text.strip()
    text=text.split()
    lp=int(text[0])             #fixed node
    mpfix[0,lp-1]=int(text[1])  #fixed in x-direction
    mpfix[1,lp-1]=int(text[2])  #fixed in y-direction
    mpfix[2,lp-1]=int(text[3])  #fixed in rotation
    rdis[0,lp-1]=float(text[4]) #fixed displacement in x-direction
    rdis[1,lp-1]=float(text[5]) #fixed displacement in y-direction
    rdis[2,lp-1]=float(text[6]) #fixed displacement in z-direction
# load
if 1<=nlod:
    for i in range(0,nlod):
        text=f.readline()
        text=text.strip()
        text=text.split()
        lp=int(text[0])           #loaded node
        fp[3*lp-3]=float(text[1]) #load in x-direction
        fp[3*lp-2]=float(text[2]) #load in y-direction
        fp[3*lp-1]=float(text[3]) #load in rotation
f.close()

print_inp(fnameW,npoin,nele,nsec,npfix,nlod,ae,x,fp,mpfix,rdis,node)

# assembly of stiffness matrix
for ne in range(0,nele):
    ek,tt,mpf,mps=STIFF(ne,node,x,ae)
    ck=np.dot(np.dot(tt.T,ek),tt)
    ir[5]=3*mps-1
    ir[4]=ir[5]-1
    ir[3]=ir[4]-1
    ir[2]=3*mpf-1
    ir[1]=ir[2]-1
    ir[0]=ir[1]-1
    for i in range(0,6):
        for j in range(0,6):
            it=ir[i]
            jt=ir[j]
            gk[it,jt]=gk[it,jt]+ck[i,j]

# treatment of boundary conditions
for i in range(0,npoin):
    for j in range(0,3):
        if mpfix[j,i]==1:
            iz=i*3+j
            fp[iz]=0.0
            for k in range(0,n):
                fp[k]=fp[k]-rdis[j,i]*gk[k,iz]
                gk[k,iz]=0.0
            gk[iz,iz]=1.0

# solution of simultaneous linear equations
disg = np.linalg.solve(gk, fp)

# recovery of restricted displacements
for i in range(0,npoin):
    for j in range(0,3):
        if mpfix[j,i]==1:
            iz=i*3+j
            for k in range(0,n):
                disg[iz]=rdis[j,i]

# calculation of section force
for ne in range(0,nele):
    ek,tt,mpf,mps=STIFF(ne,node,x,ae)
    work[0]=disg[3*mpf-3]; work[1]=disg[3*mpf-2]; work[2]=disg[3*mpf-1]
    work[3]=disg[3*mps-3]; work[4]=disg[3*mps-2]; work[5]=disg[3*mps-1]
    fsec[:,ne]=np.dot(ek,np.dot(tt,work))

print_out(fnameW,npoin,nele,disg,fsec)

dtime=time.time()-start
print('n={0}  time={1:.3f}'.format(n,dtime)+' sec')
fout=open(fnameW,'a')
print('n={0}  time={1:.3f}'.format(n,dtime)+' sec',file=fout)
fout.close()

データ作成と実行スクリプト

cat << EOT > inp_r0.txt
6 5 2 3 1
1.0 1.0 1.0
1.0 1.0 1.0
1 2 1
3 4 1
5 6 1
2 4 2
4 6 2
0 0
0 3.5
6 0
6 3.5
12 0
12 3.5
1 1 1 1 0 0 0
3 1 1 1 0 0 0
5 1 1 1 0 0 0
2 4 0 0
EOT

cat << EOT > inp_r1.txt
6 5 2 4 0
1.0 1.0 1.0
1.0 1.0 1.0
1 2 1
3 4 1
5 6 1
2 4 2
4 6 2
0 0
0 3.5
6 0
6 3.5
12 0
12 3.5
1 1 1 1 0 0 0
3 1 1 1 0 0 0
5 1 1 1 0 0 0
2 1 1 1 16.079284 2.3039125 -4.5858390
EOT

python3 py_frame_r.py inp_r0.txt out_r0.txt
python3 py_frame_r.py inp_r1.txt out_r1.txt

実行事例

Case-1 荷重を指定

out_r0.txt
npoin  nele  nsec npfix  nlod
    6     5     2     3     1
  sec               A               I               E
    1   1.0000000e+00   1.0000000e+00   1.0000000e+00
    2   1.0000000e+00   1.0000000e+00   1.0000000e+00
 node               x               y              fx              fy              fr   kox   koy   kor
    1   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    2   0.0000000e+00   3.5000000e+00   4.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
    3   6.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    4   6.0000000e+00   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
    5   1.2000000e+01   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    6   1.2000000e+01   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
 node   kox   koy   kor          rdis_x          rdis_y          rdis_r
    1     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    3     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    5     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
 elem     i     j   sec
    1     1     2     1
    2     3     4     1
    3     5     6     1
    4     2     4     2
    5     4     6     2
 node           dis-x           dis-y           dis-r
    1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    2   1.6079284e+01   2.3039125e+00  -4.5858390e+00
    3   0.0000000e+00   0.0000000e+00   0.0000000e+00
    4   5.6044784e+00  -1.4855500e+00  -6.2687943e-01
    5   0.0000000e+00   0.0000000e+00   0.0000000e+00
    6   2.6990174e+00  -8.1836247e-01  -5.5363182e-01
 elem             N_i             S_i             M_i             N_j             S_j             M_j
    1  -6.5826071e-01   2.2541991e+00   5.2550881e+00   6.5826071e-01  -2.2541991e+00   2.6346087e+00
    2   4.2444286e-01   1.2615574e+00   2.3868338e+00  -4.2444286e-01  -1.2615574e+00   2.0286170e+00
    3   2.3381785e-01   4.8424351e-01   1.0056067e+00  -2.3381785e-01  -4.8424351e-01   6.8924562e-01
    4   1.7458009e+00  -6.5826071e-01  -2.6346087e+00  -1.7458009e+00   6.5826071e-01  -1.3149555e+00
    5   4.8424351e-01  -2.3381785e-01  -7.1366148e-01  -4.8424351e-01   2.3381785e-01  -6.8924562e-01
n=18  time=0.005 sec

Case-2 強制変位指定

Case-1における荷重指定点の変位を強制変位として入力

out_r1.txt
npoin  nele  nsec npfix  nlod
    6     5     2     4     0
  sec               A               I               E
    1   1.0000000e+00   1.0000000e+00   1.0000000e+00
    2   1.0000000e+00   1.0000000e+00   1.0000000e+00
 node               x               y              fx              fy              fr   kox   koy   kor
    1   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    2   0.0000000e+00   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    3   6.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    4   6.0000000e+00   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
    5   1.2000000e+01   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    6   1.2000000e+01   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
 node   kox   koy   kor          rdis_x          rdis_y          rdis_r
    1     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    2     1     1     1   1.6079284e+01   2.3039125e+00  -4.5858390e+00
    3     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    5     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
 elem     i     j   sec
    1     1     2     1
    2     3     4     1
    3     5     6     1
    4     2     4     2
    5     4     6     2
 node           dis-x           dis-y           dis-r
    1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    2   1.6079284e+01   2.3039125e+00  -4.5858390e+00
    3   0.0000000e+00   0.0000000e+00   0.0000000e+00
    4   5.6044785e+00  -1.4855500e+00  -6.2687945e-01
    5   0.0000000e+00   0.0000000e+00   0.0000000e+00
    6   2.6990174e+00  -8.1836249e-01  -5.5363183e-01
 elem             N_i             S_i             M_i             N_j             S_j             M_j
    1  -6.5826071e-01   2.2541992e+00   5.2550882e+00   6.5826071e-01  -2.2541992e+00   2.6346088e+00
    2   4.2444286e-01   1.2615574e+00   2.3868339e+00  -4.2444286e-01  -1.2615574e+00   2.0286170e+00
    3   2.3381785e-01   4.8424351e-01   1.0056067e+00  -2.3381785e-01  -4.8424351e-01   6.8924562e-01
    4   1.7458009e+00  -6.5826071e-01  -2.6346087e+00  -1.7458009e+00   6.5826071e-01  -1.3149555e+00
    5   4.8424351e-01  -2.3381785e-01  -7.1366150e-01  -4.8424351e-01   2.3381785e-01  -6.8924562e-01
n=18  time=0.007 sec

断面力図作成プログラム

解析結果の出力項目を変更したので,断面力図作成プログラムの変更も行った.

py_force.py
import matplotlib.pyplot as plt
import numpy as np
import sys

def calc(ne,node,x,y,d1,d2):
    i=node[0,ne]-1
    j=node[1,ne]-1
    x1=x[i]
    y1=y[i]
    x2=x[j]
    y2=y[j]
    al=np.sqrt((x2-x1)**2+(y2-y1)**2)
    theta=np.arccos((x2-x1)/al)
    x4=x1-d1[ne]*np.sin(theta)
    y4=y1+d1[ne]*np.cos(theta)
    x3=x2-d2[ne]*np.sin(theta)
    y3=y2+d2[ne]*np.cos(theta)
    return x1,x2,x3,x4,y1,y2,y3,y4


# Main routine
args = sys.argv
fnameR=args[1] # input data file

f=open(fnameR,'r')
text=f.readline()
text=f.readline()
text=text.strip()
text=text.split()
npoin=int(text[0]) # Number of nodes
nele =int(text[1]) # Number of elements
nsec =int(text[2]) # Number of sections
npfix=int(text[3]) # Number of restricted nodes
nlod =int(text[4]) # Number of loaded nodes

x   =np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
y   =np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
node=np.zeros([2,nele],dtype=np.int)  # Node-element relationship
disx=np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
disy=np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
N1  =np.zeros(nele,dtype=np.float64)  # Section force vector
S1  =np.zeros(nele,dtype=np.float64)  # Section force vector
M1  =np.zeros(nele,dtype=np.float64)  # Section force vector
N2  =np.zeros(nele,dtype=np.float64)  # Section force vector
S2  =np.zeros(nele,dtype=np.float64)  # Section force vector
M2  =np.zeros(nele,dtype=np.float64)  # Section force vector

text=f.readline()
for i in range(0,nsec):
    text=f.readline()

text=f.readline()
for i in range(0,npoin):
    text=f.readline()
    text=text.strip()
    text=text.split()
    x[i]=float(text[1]) # x-coordinate
    y[i]=float(text[2]) # y-coordinate

text=f.readline()
for i in range(0,npfix):
    text=f.readline()

text=f.readline()
for i in range(0,nele):
    text=f.readline()
    text=text.strip()
    text=text.split()
    node[0,i]=int(text[1]) #node_1
    node[1,i]=int(text[2]) #node_2

text=f.readline()
for i in range(0,npoin):
    text=f.readline()
    text=text.strip()
    text=text.split()
    disx[i]=float(text[1]) # displacement in x-direction
    disy[i]=float(text[2]) # displacement in y-direction

text=f.readline()
for i in range(0,nele):
    text=f.readline()
    text=text.strip()
    text=text.split()
    N1[i]=-float(text[1]) # axial force at node-1
    S1[i]= float(text[2]) # shear force at node-1
    M1[i]= float(text[3]) # moment at node-1
    N2[i]= float(text[4]) # axial force at node-2
    S2[i]=-float(text[5]) # shear force at node-2
    M2[i]=-float(text[6]) # moment at node-2
f.close()

nmax=np.max([np.max(np.abs(N1)),np.max(np.abs(N2))])
smax=np.max([np.max(np.abs(S1)),np.max(np.abs(S2))])
mmax=np.max([np.max(np.abs(M1)),np.max(np.abs(M2))])
dmax=np.max([np.max(np.abs(disx)),np.max(np.abs(disy))])

xmin=-3
xmax=13
ymin=-3
ymax=9

scl_dis=1.0
scl_axi=1.0
scl_she=1.0
scl_mom=2.0

for nnn in range(0,4):
    ax=plt.subplot(111)
    ax.set_xlim([xmin,xmax])
    ax.set_ylim([ymin,ymax])
    ax.set_xlabel('x-direction (m)')
    ax.set_ylabel('y-direction (m)')
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)
    ax.yaxis.set_ticks_position('left')
    ax.xaxis.set_ticks_position('bottom')
    aspect = (ymax-ymin)/(xmax-xmin)*(ax.get_xlim()[1] - ax.get_xlim()[0]) / (ax.get_ylim()[1] - ax.get_ylim()[0])
    ax.set_aspect(aspect)

    if nnn==0:
        # displacement
        fnameF='fig_dis.png'
        ls1='disx_max={0:15.7e}'.format(np.max(disx))
        ls2='disx_min={0:15.7e}'.format(np.min(disx))
        ls3='disy_max={0:15.7e}'.format(np.max(disy))
        ls4='disy_min={0:15.7e}'.format(np.min(disy))
        dx=x+disx/dmax*scl_dis
        dy=y+disy/dmax*scl_dis
        for ne in range(0,nele):
            n1=node[0,ne]-1
            n2=node[1,ne]-1
            ax.plot([x[n1],x[n2]],[y[n1],y[n2]],color='gray',linewidth=0.5)
            ax.plot([dx[n1],dx[n2]],[dy[n1],dy[n2]],color='black',linewidth=1)
    if nnn==1:
        # axial force diagram
        fnameF='fig_axi.png'
        ls1='N_max={0:15.7e}'.format(np.max([np.max(N1),np.max(N2)]))
        ls2='N_min={0:15.7e}'.format(np.min([np.min(N1),np.min(N2)]))
        ls3=''
        ls4=''
        d1=N1/nmax*scl_axi
        d2=N2/nmax*scl_axi
        for ne in range(0,nele):
            x1,x2,x3,x4,y1,y2,y3,y4=calc(ne,node,x,y,d1,d2)
            if d1[ne]<=0.0: # compression
                ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.1)
            else: # tension
                ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.2)
        for ne in range(0,nele):
            n1=node[0,ne]-1
            n2=node[1,ne]-1
            plt.plot([x[n1],x[n2]],[y[n1],y[n2]],color='black',linewidth=0.5)
    if nnn==2:
        # shearing force
        fnameF='fig_she.png'
        ls1='S_max={0:15.7e}'.format(np.max([np.max(-S1),np.max(-S2)]))
        ls2='S_min={0:15.7e}'.format(np.min([np.min(-S1),np.min(-S2)]))
        ls3=''
        ls4=''
        d1=S1/smax*scl_she
        d2=S2/smax*scl_she
        for ne in range(0,nele):
            x1,x2,x3,x4,y1,y2,y3,y4=calc(ne,node,x,y,d1,d2)
            ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.1)
        for ne in range(0,nele):
            n1=node[0,ne]-1
            n2=node[1,ne]-1
            ax.plot([x[n1],x[n2]],[y[n1],y[n2]],color='black',linewidth=0.5)
    if nnn==3:
        # moment
        fnameF='fig_mom.png'
        ls1='M_max={0:15.7e}'.format(np.max([np.max(-M1),np.max(-M2)]))
        ls2='M_min={0:15.7e}'.format(np.min([np.min(-M1),np.min(-M2)]))
        ls3=''
        ls4=''
        d1=M1/mmax*scl_mom
        d2=M2/mmax*scl_mom
        for ne in range(0,nele):
            x1,x2,x3,x4,y1,y2,y3,y4=calc(ne,node,x,y,d1,d2)
            ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.1)
        for ne in range(0,nele):
            n1=node[0,ne]-1
            n2=node[1,ne]-1
            ax.plot([x[n1],x[n2]],[y[n1],y[n2]],color='black',linewidth=0.5)

    ax.plot(xmin,ymin,'.',label=ls1)
    ax.plot(xmin,ymin,'.',label=ls2)
    ax.plot(xmin,ymin,'.',label=ls3)
    ax.plot(xmin,ymin,'.',label=ls4)
    ax.legend(loc='upper right',numpoints=1,markerscale=0, frameon=False,prop={'family':'monospace','size':12})
    plt.savefig(fnameF, bbox_inches="tight", pad_inches=0.2)
    plt.clf()

以 上

2
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
2