3
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

『経済・ファイナンスデータの計量時系列分析』章末問題をRで解く-第5章単位根過程-

Last updated at Posted at 2016-12-25

『経済・ファイナンスデータの計量時系列分析』

の章末問題で「コンピュータを用いて」とあるものをRで解いています。

5.2.

data<-read.table("economicdata.txt",header=T)
data.ts<-ts(data=data[,2:7],start=c(1975, 1), frequency=12)

以下すべてトレンドがあるので「場合3」の筈だが、解答例と異なる

  • topix
plot(stl(data.ts[,1], s.window="per"), main="topix")

Rplot07.png

  • exrate
plot(stl(data.ts[,2], s.window="per"), main="exrate")

Rplot08.png

  • indprod(本書ではGDP)
plot(stl(data.ts[,3], s.window="per"), main="indprod(GDP)")

Rplot09.png

  • cpi
plot(stl(data.ts[,4], s.window="per"), main="cpi")

Rplot10.png

  • saunemp(失業率)
plot(stl(data.ts[,5], s.window="per"), main="saunemp")

Rplot11.png

  • intrate(コールレート)
plot(stl(data.ts[,6], s.window="per"), main="intrate")

Rplot12.png

5.3.

  • テキストの値と合わないが、差分を取って帰無仮説が棄却されたので、単位根過程
    -- 差分系列で分析を行う
library(tseries)
adf.test(data.ts[,5],alternative="stationary")
	Augmented Dickey-Fuller Test

data:  data.ts[, 5]
Dickey-Fuller = -1.5663, Lag order = 7, p-value = 0.76
alternative hypothesis: stationary

adf.test(data.ts[,5],alternative="explosive")
	Augmented Dickey-Fuller Test

data:  data.ts[, 5]
Dickey-Fuller = -1.5663, Lag order = 7, p-value = 0.24
alternative hypothesis: explosive
adf.test(diff(data.ts[,5]),alternative="stationary")
	Augmented Dickey-Fuller Test

data:  diff(data.ts[, 5])
Dickey-Fuller = -5.3633, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(data.ts[, 5]), alternative = "stationary") :
  p-value smaller than printed p-value
adf.test(diff(data.ts[,5]),alternative="explosive")
	Augmented Dickey-Fuller Test

data:  diff(data.ts[, 5])
Dickey-Fuller = -5.3633, Lag order = 7, p-value = 0.99
alternative hypothesis: explosive

5.5.

  • トレンドの有無でalternative=c("stationaly", "explosiv")を指定する必要があるが、以下は"stationaly"で実行

(1)

  • topix
adf.test(log(data.ts[,1]))
	Augmented Dickey-Fuller Test

data:  log(data.ts[, 1])
Dickey-Fuller = -1.2425, Lag order = 7, p-value = 0.8966
alternative hypothesis: stationary
adf.test(log(data.ts[,1]), alternative="explosiv")
	Augmented Dickey-Fuller Test

data:  log(data.ts[, 1])
Dickey-Fuller = -1.2425, Lag order = 7, p-value = 0.1034
alternative hypothesis: explosive
pp.test(log(data.ts[,1]))
	Phillips-Perron Unit Root Test

data:  log(data.ts[, 1])
Dickey-Fuller Z(alpha) = -2.6978, Truncation lag parameter = 5, p-value =
0.9476
alternative hypothesis: stationary
  • exrate
adf.test(log(data.ts[,2]))
	Augmented Dickey-Fuller Test

data:  log(data.ts[, 2])
Dickey-Fuller = -1.748, Lag order = 7, p-value = 0.6833
alternative hypothesis: stationary
pp.test(log(data.ts[,2]))
	Phillips-Perron Unit Root Test

data:  log(data.ts[, 2])
Dickey-Fuller Z(alpha) = -7.2163, Truncation lag parameter = 5, p-value =
0.7062
alternative hypothesis: stationary
  • indprod(本書ではGDP)
adf.test(log(data.ts[,3]))
	Augmented Dickey-Fuller Test

data:  log(data.ts[, 3])
Dickey-Fuller = -2.2418, Lag order = 7, p-value = 0.4749
alternative hypothesis: stationary
pp.test(log(data.ts[,3]))
	Phillips-Perron Unit Root Test

data:  log(data.ts[, 3])
Dickey-Fuller Z(alpha) = -4.6404, Truncation lag parameter = 5, p-value =
0.8504
alternative hypothesis: stationary
  • cpi
adf.test(log(data.ts[,4]))
	Augmented Dickey-Fuller Test

data:  log(data.ts[, 4])
Dickey-Fuller = -3.8057, Lag order = 7, p-value = 0.01899
alternative hypothesis: stationary
pp.test(log(data.ts[,4]))
	Phillips-Perron Unit Root Test

data:  log(data.ts[, 4])
Dickey-Fuller Z(alpha) = -4.1101, Truncation lag parameter = 5, p-value =
0.8801
alternative hypothesis: stationary
  • saunemp(失業率)
adf.test(data.ts[,5])
	Augmented Dickey-Fuller Test

data:  data.ts[, 5]
Dickey-Fuller = -1.5663, Lag order = 7, p-value = 0.76
alternative hypothesis: stationary
pp.test(data.ts[,5])
	Phillips-Perron Unit Root Test

data:  data.ts[, 5]
Dickey-Fuller Z(alpha) = -3.4958, Truncation lag parameter = 5, p-value =
0.9117
alternative hypothesis: stationary
  • intrate(コールレート)
adf.test(data.ts[,6])
	Augmented Dickey-Fuller Test

data:  data.ts[, 6]
Dickey-Fuller = -3.7402, Lag order = 7, p-value = 0.02226
alternative hypothesis: stationary
pp.test(data.ts[,6])
	Phillips-Perron Unit Root Test

data:  data.ts[, 6]
Dickey-Fuller Z(alpha) = -15.324, Truncation lag parameter = 5, p-value =
0.2523
alternative hypothesis: stationary
  • cpi, intrateのadfのみ帰無仮説を棄却

(2)

  • topix
adf.test(diff(log(data.ts[,1])))
	Augmented Dickey-Fuller Test

data:  diff(log(data.ts[, 1]))
Dickey-Fuller = -6.3141, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(log(data.ts[, 1]))) : p-value smaller than printed p-value
pp.test(diff(log(data.ts[,1])))
	Phillips-Perron Unit Root Test

data:  diff(log(data.ts[, 1]))
Dickey-Fuller Z(alpha) = -253.61, Truncation lag parameter = 5, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In pp.test(diff(log(data.ts[, 1]))) : p-value smaller than printed p-value
  • exrate
adf.test(diff(log(data.ts[,2])))
	Augmented Dickey-Fuller Test

data:  diff(log(data.ts[, 2]))
Dickey-Fuller = -5.8527, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(log(data.ts[, 2]))) : p-value smaller than printed p-value
pp.test(diff(log(data.ts[,2])))
	Phillips-Perron Unit Root Test

data:  diff(log(data.ts[, 2]))
Dickey-Fuller Z(alpha) = -246.95, Truncation lag parameter = 5, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In pp.test(diff(log(data.ts[, 2]))) : p-value smaller than printed p-value
  • indprod(本書ではGDP)
adf.test(diff(log(data.ts[,3])))
	Augmented Dickey-Fuller Test

data:  diff(log(data.ts[, 3]))
Dickey-Fuller = -5.1424, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(log(data.ts[, 3]))) : p-value smaller than printed p-value
pp.test(diff(log(data.ts[,3])))
	Phillips-Perron Unit Root Test

data:  diff(log(data.ts[, 3]))
Dickey-Fuller Z(alpha) = -553.4, Truncation lag parameter = 5, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In pp.test(diff(log(data.ts[, 3]))) : p-value smaller than printed p-value
  • cpi
adf.test(diff(log(data.ts[,4])))
	Augmented Dickey-Fuller Test

data:  diff(log(data.ts[, 4]))
Dickey-Fuller = -4.6986, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(log(data.ts[, 4]))) : p-value smaller than printed p-value
pp.test(diff(log(data.ts[,4])))
	Phillips-Perron Unit Root Test

data:  diff(log(data.ts[, 4]))
Dickey-Fuller Z(alpha) = -267.34, Truncation lag parameter = 5, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In pp.test(diff(log(data.ts[, 4]))) : p-value smaller than printed p-value
  • saunemp(失業率)
adf.test(diff(data.ts[,5]))
	Augmented Dickey-Fuller Test

data:  diff(data.ts[, 5])
Dickey-Fuller = -5.3633, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(data.ts[, 5])) : p-value smaller than printed p-value
pp.test(diff(data.ts[,5]))
	Phillips-Perron Unit Root Test

data:  diff(data.ts[, 5])
Dickey-Fuller Z(alpha) = -387.91, Truncation lag parameter = 5, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In pp.test(diff(data.ts[, 5])) : p-value smaller than printed p-value
  • intrate(コールレート)
adf.test(diff(data.ts[,6]))
	Augmented Dickey-Fuller Test

data:  diff(data.ts[, 6])
Dickey-Fuller = -5.9193, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(data.ts[, 6])) : p-value smaller than printed p-value
pp.test(diff(data.ts[,6]))
	Phillips-Perron Unit Root Test

data:  diff(data.ts[, 6])
Dickey-Fuller Z(alpha) = -263.86, Truncation lag parameter = 5, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In pp.test(diff(data.ts[, 6])) : p-value smaller than printed p-value
  • すべて、p-value=0.01 となり、5or1%の危険率で帰無仮説が棄却される。

次は、『経済・ファイナンスデータの計量時系列分析』章末問題をRで解く-第6章見せかけの回帰と共和分-

3
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?