15
15

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

組合せ最適化 - 典型問題 - 最大流問題

Last updated at Posted at 2015-07-10

典型問題と実行方法
##最大流問題
グラフ$G=(V,E)$の各辺$e_{ij}=(v_i,v_j)\in E$が容量$c_{ij}$をもつとき、始点$v_s \in V$(ソース)から終点$v_t \in V$(シンク)への総流量が最大となるフローを求めよ。

##実行方法

usage
Signature: nx.maximum_flow(G, s, t, capacity='capacity', flow_func=None, **kwargs)
Docstring:
Find a maximum single-commodity flow.
python
# CSVデータ
import pandas as pd, networkx as nx
from ortoolpy import graph_from_table, networkx_draw
tbn = pd.read_csv('data/node0.csv')
tbe = pd.read_csv('data/edge0.csv')
g = graph_from_table(tbn, tbe)[0]
t = nx.maximum_flow(g, 5, 2)
pos = networkx_draw(g)
nx.draw_networkx_edges(g, pos, width=3, edgelist
  =[(k1, k2) for k1, d in t[1].items() for k2, v in d.items() if v])
plt.show()
for i, d in t[1].items():
    for j, f in d.items():
        if f: print((i, j), f)
結果
(0, 2) 2
(0, 3) 2
(1, 2) 2
(3, 2) 2
(4, 0) 2
(5, 0) 2
(5, 1) 2
(5, 4) 2

mxf2.png

python
# pandas.DataFrame
from ortoolpy.optimization import MaximumFlow
MaximumFlow('data/edge0.csv', 5, 2)[1]
node1 node2 capacity weight flow
0 0 2 2 4 2
1 0 3 2 2 2
2 0 4 2 2 2
3 0 5 2 4 2
4 1 2 2 5 2
5 1 5 2 5 2
6 2 3 2 3 2
7 4 5 2 1 2
python
# 乱数データ
import networkx as nx, matplotlib.pyplot as plt
from ortoolpy import networkx_draw
g = nx.random_graphs.fast_gnp_random_graph(10, 0.3, 1)
for i, j in g.edges():
    g.adj[i][j]['capacity'] = 1
t = nx.maximum_flow(g, 5, 6)
pos = networkx_draw(g, nx.spring_layout(g))
nx.draw_networkx_edges(g, pos, width=3, edgelist
  =[(k1, k2) for k1, d in t[1].items() for k2, v in d.items() if v])
plt.show()

mxf.png

##データ

15
15
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
15
15

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?