TensorFlowのチュートリアル(Partial Differential Equations)
https://www.tensorflow.org/versions/master/tutorials/pdes/index.html#partial-differential-equations
の翻訳です。
翻訳の誤りなどあればご指摘お待ちしております。
TensorFlowは機械学習のためだけのものではありません。ここでは、TensorFlowを使用して偏微分方程式の挙動をシミュレートする(やや単調な)例を示します。正方形の池の表面にいくつかの雨滴が落ちる様子をシミュレートします。
注:このチュートリアルは、本来 IPython notebook のために準備しました。
##基本設定
いくつかの import が必要です。
#Import libraries for simulation
import tensorflow as tf
import numpy as np
#Imports for visualization
import PIL.Image
from cStringIO import StringIO
from IPython.display import clear_output, Image, display
池の表面の状態を画像として表示する関数です。
def DisplayArray(a, fmt='jpeg', rng=[0,1]):
"""Display an array as a picture."""
a = (a - rng[0])/float(rng[1] - rng[0])*255
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
いじくりまわす利便性のために対話型TensorFlowセッションを開始します。通常のセッションでも、 .py 実行ファイルで実行すれば、同様に動作します。
sess = tf.InteractiveSession()
##計算上の便利関数
def make_kernel(a):
"""Transform a 2D array into a convolution kernel"""
a = np.asarray(a)
a = a.reshape(list(a.shape) + [1,1])
return tf.constant(a, dtype=1)
def simple_conv(x, k):
"""A simplified 2D convolution operation"""
x = tf.expand_dims(tf.expand_dims(x, 0), -1)
y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
return y[0, :, :, 0]
def laplace(x):
"""Compute the 2D laplacian of an array"""
laplace_k = make_kernel([[0.5, 1.0, 0.5],
[1.0, -6., 1.0],
[0.5, 1.0, 0.5]])
return simple_conv(x, laplace_k)
##偏微分方程式の定義
自然界の大部分の池の場合のように、我々の池は完全な500×500の正方形です。
N = 500
池を作成し、いくつかの雨滴でそれを打ちます。
# Initial Conditions -- some rain drops hit a pond
# Set everything to zero
u_init = np.zeros([N, N], dtype="float32")
ut_init = np.zeros([N, N], dtype="float32")
# Some rain drops hit a pond at random points
for n in range(40):
a,b = np.random.randint(0, N, 2)
u_init[a,b] = np.random.uniform()
DisplayArray(u_init, rng=[-0.1, 0.1])
微分方程式の詳細を指定しましょう。
# Parameters:
# eps -- time resolution
# damping -- wave damping
eps = tf.placeholder(tf.float32, shape=())
damping = tf.placeholder(tf.float32, shape=())
# Create variables for simulation state
U = tf.Variable(u_init)
Ut = tf.Variable(ut_init)
# Discretized PDE update rules
U_ = U + eps * Ut
Ut_ = Ut + eps * (laplace(U) - damping * Ut)
# Operation to update the state
step = tf.group(
U.assign(U_),
Ut.assign(Ut_))
##シミュレーションを実行
楽しめる場所です―単純な for ループで時間を前に進めます。
# Initialize state to initial conditions
tf.initialize_all_variables().run()
# Run 1000 steps of PDE
for i in range(1000):
# Step simulation
step.run({eps: 0.03, damping: 0.04})
# Visualize every 50 steps
if i % 50 == 0:
clear_output()
DisplayArray(U.eval(), rng=[-0.1, 0.1])
見て!波紋!