0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ADDA > convertToInputcsv_170422.py > TensorFlow用のファイル(input.csv)に変換 > v0.1

Last updated at Posted at 2017-04-22
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 14.04 LTS desktop amd64
TensorFlow v0.11
cuDNN v5.1 for Linux
CUDA v8.0
Python 2.7.6
IPython 5.1.0 -- An enhanced Interactive Python.
gcc (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4
GNU bash, version 4.3.8(1)-release (x86_64-pc-linux-gnu)

This article is related to ADDA (light scattering simulator based on the discrete dipole approximation).

InitField-Y

$ head IntField-Y 
x y z |E|^2 Ex.r Ex.i Ey.r Ey.i Ez.r Ez.i
-0.2094395102 -1.466076572 -5.235987756 0.4481601286 0.1631827602 0.1136883225 0.5191361677 0.3564084944 -0.1097504118 0.005652637511
0.2094395102 -1.466076572 -5.235987756 0.7745881872 0.1098627477 0.07526815655 0.8067658221 0.3136058991 -0.08733927173 0.002273400976
-1.047197551 -1.047197551 -5.235987756 0.11714951 0.01143212548 0.1054770412 -0.1519192093 0.2845811388 -0.04028466164 0.01430683806
-0.6283185307 -1.047197551 -5.235987756 0.1951690014 0.1179491742 0.09099830363 0.1326218142 0.3899160502 -0.04912997581 0.03065087379
-0.2094395102 -1.047197551 -5.235987756 0.3872950636 0.1719851184 0.04449915171 0.4226400539 0.4162386629 -0.05432106683 0.03009967244
0.2094395102 -1.047197551 -5.235987756 0.5623337432 0.1345745413 0.08159228707 0.6960987616 0.2283745441 -0.02927571502 0.0008055442539
0.6283185307 -1.047197551 -5.235987756 0.6510356113 0.101646831 -0.02684327634 0.7978570253 0.04091821028 -0.02392884861 -0.03406242954
1.047197551 -1.047197551 -5.235987756 0.5485766074 0.04689584344 -0.05569883516 0.7281592273 -0.100947639 -0.03418497024 -0.04123261679
-1.047197551 -0.6283185307 -5.235987756 0.150497933 0.01971488155 0.08314960573 -0.2755689582 0.2560853162 -0.04039547019 0.006757636442
  • 空白区切りをカンマ区切りにする
  • TensorFlowの学習に用いる項目だけにする

上記のための変換コードを作った。

code v0.1

convertToInputcsv_170422.py
import numpy as np

'''
v0.1 Apr. 22, 2017
   - read 'IntField' then output for TensorFlow
'''

#codingrule: PEP8

data = np.genfromtxt('IntField-Y', delimiter=' ')
#print(data[1:, 0])  # 1st columne
#print(data[1:, 1])  # 2nd columne

xpos, ypos, zpos = data[1:, 0], data[1:, 1], data[1:, 2]
E2 = data[1:, 3]
Exr, Exi = data[1:, 4], data[1:, 5]
Eyr, Eyi = data[1:, 6], data[1:, 7]
Ezr, Ezi = data[1:, 8], data[1:, 9]

list = zip(xpos, ypos, zpos, Exr, Exi, Eyr, Eyi, Ezr, Ezi)

for tpl in list:
    print("%s, %s, %s, %s, %s, %s, %s, %s, %s" % tpl)

run
$ python convertToInputcsv_170422.py > input.csv 
$ head input.csv 
-0.2094395102, -1.466076572, -5.235987756, 0.1631827602, 0.1136883225, 0.5191361677, 0.3564084944, -0.1097504118, 0.005652637511
0.2094395102, -1.466076572, -5.235987756, 0.1098627477, 0.07526815655, 0.8067658221, 0.3136058991, -0.08733927173, 0.002273400976
-1.047197551, -1.047197551, -5.235987756, 0.01143212548, 0.1054770412, -0.1519192093, 0.2845811388, -0.04028466164, 0.01430683806
-0.6283185307, -1.047197551, -5.235987756, 0.1179491742, 0.09099830363, 0.1326218142, 0.3899160502, -0.04912997581, 0.03065087379
-0.2094395102, -1.047197551, -5.235987756, 0.1719851184, 0.04449915171, 0.4226400539, 0.4162386629, -0.05432106683, 0.03009967244
0.2094395102, -1.047197551, -5.235987756, 0.1345745413, 0.08159228707, 0.6960987616, 0.2283745441, -0.02927571502, 0.0008055442539
0.6283185307, -1.047197551, -5.235987756, 0.101646831, -0.02684327634, 0.7978570253, 0.04091821028, -0.02392884861, -0.03406242954
1.047197551, -1.047197551, -5.235987756, 0.04689584344, -0.05569883516, 0.7281592273, -0.100947639, -0.03418497024, -0.04123261679
-1.047197551, -0.6283185307, -5.235987756, 0.01971488155, 0.08314960573, -0.2755689582, 0.2560853162, -0.04039547019, 0.006757636442
-0.6283185307, -0.6283185307, -5.235987756, 0.06619290684, 0.04183265213, 0.08778209189, 0.3944779431, -0.03724331442, 0.02027978893
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?