GeForce GTX 750 Ti
Windows 8.1 pro (64bit)
Visual Studio Community 2013 (以下、VS)
CUDA 7.5
CPUでの処理とGPUでの処理を比較しようと思っている。
それには時間計測が必要だ。
情報
stackoverflowに例があった。
http://stackoverflow.com/questions/14337278/precise-time-measurement
answered Jan 15 '13 at 12:04
Constantinius
によるコード
準備
http://qiita.com/7of9/items/e9c185351803d9794db5
を参考にCUDAをビルドできるslnを用意する (160910_mreasureTimeとした)。
code > cudaDeviceReset()の時間計測
LARGE_INTEGERを使うにはWindows.hをincludeする必要あり。
# include "cuda_runtime.h"
# include "device_launch_parameters.h"
# include <Windows.h> // LARGE_INTEGERなどに必要
# include <stdio.h>
__global__ void addKernel(int *c, const int *a, const int *b)
{
//int i = threadIdx.x;
//c[i] = a[i] + b[i];
}
int main()
{
cudaError_t cudaStatus;
LARGE_INTEGER frequency; // ticks per second
LARGE_INTEGER t1, t2; // ticks
double elapsedTime;
QueryPerformanceFrequency(&frequency); // get ticks per second
QueryPerformanceCounter(&t1); // start timer
// { process to measure ---------
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
// } process to measure ---------
QueryPerformanceCounter(&t2); // stop timer
// compute and print the elapsed time in millisec
elapsedTime = (t2.QuadPart - t1.QuadPart) * 1000.0 / frequency.QuadPart;
printf("%.1f msec\n", elapsedTime);
return 0;
}
C:\CudaDev\160910_measureTime\Debug>160910_measureTime.exe
13.5 msec
こちらの環境ではcudaDeviceReset()にはだいたい13msecかかる。
今後はGPUを使う計算を実装し、それをCPU処理と比較する。
code > GPU処理の時間計測
CUDA 7.5 RuntimeのサンプルコードでのGPU処理の時間を計測してみた。
# include "cuda_runtime.h"
# include "device_launch_parameters.h"
# include <Windows.h> // LARGE_INTEGERなどに必要
# include <stdio.h>
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
__global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
int main()
{
const int arraySize = 5;
const int a[arraySize] = { 1, 2, 3, 4, 5 };
const int b[arraySize] = { 10, 20, 30, 40, 50 };
int c[arraySize] = { 0 };
LARGE_INTEGER frequency; // ticks per second
LARGE_INTEGER t1, t2; // ticks
double elapsedTime;
QueryPerformanceFrequency(&frequency); // get ticks per second
QueryPerformanceCounter(&t1); // start timer
// { process to measure ---------
// Add vectors in parallel.
cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
}
// } process to measure ---------
QueryPerformanceCounter(&t2); // stop timer
// compute and print the elapsed time in millisec
elapsedTime = (t2.QuadPart - t1.QuadPart) * 1000.0 / frequency.QuadPart;
printf("%.1f msec\n", elapsedTime);
printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",
c[0], c[1], c[2], c[3], c[4]);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
addKernel<<<1, size>>>(dev_c, dev_a, dev_b);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}
結果について以下の記事とした。
http://qiita.com/7of9/items/70b21e72c3cb9a094f2d
実行の度に処理時間が減っていくのが未消化。
同じ処理をCPUで実行すると0.0msecとなった。処理が速すぎてmsecでは追えない。
一方でGPUの場合はオーバーヘッドが結果として出ているのかもしれない。